[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 2 (4-2024) ::
Int J Radiat Res 2024, 22(2): 449-455 Back to browse issues page
Expression of regulatory T cells in driver-gene-negative advanced non-small cell lung cancer as well as its effect on the therapeutic efficacy and prognosis of immune checkpoint inhibitors
Y. Chen , S. Chen , Y. Li , X. Guo , Q. Liang , L. Yang , C. Lei
Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan 637000, China , 13990829946@163.com
Abstract:   (198 Views)
Background: The To measure regulatory T cells (Tregs) expression in driver-gene-negative advanced non-small cell lung cancer (NSCLC) as well as its effect on the therapeutic efficacy and prognosis of immune checkpoint inhibitors (ICIs). Materials and Methods: Fifty patients with advanced non-small cell lung cancer without driving genes who were receiving treatment with a monoclonal antibody targeting the programmed death receptor-1 (PD-1) made up the study group. 30 healthy subjects in the same period were chosen into the control group. Flow cytometry was used to identify CD4highCD25+Foxp3+Treg cells in peripheral blood of all participants. Relation between CD4highCD25+Foxp3+Treg cells and tumor markers were explored, and efficacy and prognosis in patients before and after therapy was analyzed. Results: The fraction of CD4highCD25+Foxp3+Treg cells in the study group was higher (P<0.05). Following three rounds of PD-1 monoclonal antibody treatment, patients' CD4highCD25+Foxp3+Treg cells proportion was lower than before treatment (P<0.01), and showed a positive correlation with tumor markers (P<0.05). The fraction of CD4highCD25+Foxp3+Treg cells in the CR+PR group decreased in both the second and third cycles after treatment compared to the SD+PD group (P<0.01), but no change was found before or during the first cycle (P>0.05). CD4highCD25+Foxp3+Treg cells proportion in the death group presented higher relative to the survival group (P<0.05). CD4highCD25+Foxp3+Treg cells predicted the area under the ROC curve was 0.8134, with significant difference (P<0.05). Conclusion: CD4highCD25+Foxp3+Treg cells proportion in peripheral blood of NSCLC patients shows increased, and has predictive value for therapeutic efficacy of ICIs and prognosis of driver-gene-negative advanced NSCLC patients.
Keywords: Non-small cell lung cancer, regulatory T cells, immune checkpoint inhibitors, prognosis.
Full-Text [PDF 596 kb]   (41 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Nasim F, Sabath BF, Eapen GA (2019) Lung cancer. Med Clin North Am, 103(3): 463-473. [DOI:10.1016/j.mcna.2018.12.006]
2. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature, 553(7689): 446-454. [DOI:10.1038/nature25183]
3. Gharghani S and Ghaedi K (2021) Introduction of long non-coding rna and their potential role as a biomarker in breast cancer. Alkhass, 3(2): 1-6. [DOI:10.47176/alkhass.3.2.1]
4. Zhou C, Ramalingam SS, Kim TM, et al. (2021) Treatment outcomes and safety of mobocertinib in platinum-pretreated patients with egfr exon 20 insertion-positive metastatic non-small cell lung cancer: a phase 1/2 open-label nonrandomized clinical trial. J Ama Oncol, 7(12): e214761. [DOI:10.1001/jamaoncol.2021.4761]
5. Zhang Q, Tang L, Zhou Y, et al. (2021) Immune checkpoint inhibitor-associated pneumonitis in non-small cell lung cancer: current understanding in characteristics, diagnosis, and management. Front Immunol, 12: 663986. [DOI:10.3389/fimmu.2021.663986]
6. Morad G, Helmink BA, Sharma P, Wargo JA (2021) Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell, 184(21): 5309-5337. [DOI:10.1016/j.cell.2021.09.020]
7. Shiravand Y, Khodadadi F, Kashani SMA, et al. (2022) Immune checkpoint inhibitors in cancer therapy. Curr Oncol, 29(5): 3044-3060. [DOI:10.3390/curroncol29050247]
8. Han Y, Liu D, Li L (2020) Pd-1/pd-l1 pathway: current researches in cancer. Am J Cancer Res, 10(3): 727-742.
9. Pu Y and Ji Q (2022) Tumor-associated macrophages regulate pd-1/pd-l1 immunosuppression. Front Immunol, 13: 874589. [DOI:10.3389/fimmu.2022.874589]
10. Wang J, Zhang R, Lin Z, et al. (2020) Cdk7 inhibitor thz1 enhances antipd-1 therapy efficacy via the p38α/myc/pd-l1 signaling in non-small cell lung cancer. J Hematol Oncol, 13(1): 99. [DOI:10.1186/s13045-020-00926-x]
11. Soerens AG, Künzli M, Quarnstrom CF, et al. (2023) Functional t cells are capable of supernumerary cell division and longevity. Nature, 614(7949): 762-766. [DOI:10.1038/s41586-022-05626-9]
12. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of cd4+cd25+ regulatory t cells. Nat Immunol, 4(4): 330-6. [DOI:10.1038/ni904]
13. Khazaie K and von Boehmer H (2006) The impact of cd4+cd25+ treg on tumor specific cd8+ t cell cytotoxicity and cancer. Semin Cancer Biol, 16(2): 124-36. [DOI:10.1016/j.semcancer.2005.11.006]
14. Buckner JH (2010) Mechanisms of impaired regulation by cd4(+)cd25(+)foxp3(+) regulatory t cells in human autoimmune diseases. Nat Rev Immunol, 10(12): 849-59. [DOI:10.1038/nri2889]
15. Qin S, Li L, Liu J, et al. (2020) Cd4(+)cd25(+)foxp3(+) regulatory t cells regulate immune balance in unexplained recurrent spontaneous abortion via the toll-like receptor 4/nuclear factor-κb pathway. J Int Med Res, 48(12): 300060520980940. [DOI:10.1177/0300060520980940]
16. Hu, X., Y. gu, S. Zhao, et al. (2019) Elevated circulating cd4(+)cd25(-)foxp3(+) regulatory t cells in patients with nonsmall cell lung cancer. Cancer Biother Radiopharm, 34(5): 325-333. [DOI:10.1089/cbr.2018.2672]
17. Luz-Crawford P, Kurte M, Bravo-Alegría J, et al. (2013) Mesenchymal stem cells generate a cd4+cd25+foxp3+ regulatory t cell population during the differentiation process of th1 and th17 cells. Stem Cell Res Ther, 4(3): 65. [DOI:10.1186/scrt216]
18. Hariyanto AD, Permata TBM, Gondhowiardjo SA (2022) Role of cd4(+)cd25(+)foxp3(+) t(reg) cells on tumor immunity. Immunol Med, 45(2): 94-107. [DOI:10.1080/25785826.2021.1975228]
19. Chen C, Chen D, Zhang Y, et al. (2014) Changes of cd4+cd25+foxp3+ and cd8+cd28- regulatory t cells in non-small cell lung cancer patients undergoing surgery. Int Immunopharmacol, 18(2): 255-61. [DOI:10.1016/j.intimp.2013.12.004]
20. Kumagai S, Togashi Y, Kamada T, et al. (2020) The pd-1 expression balance between effector and regulatory t cells predicts the clinical efficacy of pd-1 blockade therapies. Nat Immunol, 21(11): 1346-1358. [DOI:10.1038/s41590-020-0769-3]
21. Wang F, Xia T, Li Z, et al. (2023) Current status of clinical trial research and application of immune checkpoint inhibitors for non-small cell lung cancer. Front Oncol, 13: 1213297. [DOI:10.3389/fonc.2023.1213297]
22. Chen P, Liu Y, Wen Y, Zhou C (2022) Non-small cell lung cancer in china. Cancer Commun (lond), 42(10): 937-970. [DOI:10.1002/cac2.12359]
23. Chen Y, Gao M, Huang Z, et al. (2020) SBRT combined with pd-1/pd-l1 inhibitors in nsclc treatment: a focus on the mechanisms, advances, and future challenges. J Hematol Oncol, 13(1): 105. [DOI:10.1186/s13045-020-00940-z]
24. Hendriks LE, Kerr KM, Menis J, et al. (2023) Oncogene-addicted metastatic non-small-cell lung cancer: esmo clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol, 34(4): 339-357. [DOI:10.1016/j.annonc.2022.12.009]
25. Langhans B, Nischalke HD, Krämer B, et al. (2019) Role of regulatory t cells and checkpoint inhibition in hepatocellular carcinoma. Cancer Immunol Immunother, 68(12): 2055-2066. [DOI:10.1007/s00262-019-02427-4]
26. Korbakis D, Dimitromanolakis A, Prassas I, et al. (2015) Serum lamc2 enhances the prognostic value of a multi-parametric panel in non-small cell lung cancer. Br J Cancer, 113(3): 484-91. [DOI:10.1038/bjc.2015.171]
27. Dal Bello MG, Filiberti RA, Alama A, et al. (2019) The role of cea, cyfra21-1 and nse in monitoring tumor response to nivolumab in advanced non-small cell lung cancer (nsclc) patients. J Transl Med, 17(1): 74. [DOI:10.1186/s12967-019-1828-0]
28. Fu L, Wang R, Yin L, et al. (2019) Cyfra21-1 tests in the diagnosis of non-small cell lung cancer: a meta-analysis. Int J Biol Markers, 34(3): 251-261. [DOI:10.1177/1724600819868234]
29. Lakemeyer L, Sander S, Wittau M, et al. (2021) Diagnostic and prognostic value of cea and ca19-9 in colorectal cancer. Diseases, 9(1). [DOI:10.3390/diseases9010021]
30. Hall C, Clarke L, Pal A, et al. (2019) A review of the role of carcinoembryonic antigen in clinical practice. Ann Coloproctol, 35(6): 294-305. [DOI:10.3393/ac.2019.11.13]
31. Öjlert ÅK, Halvorsen AR, Nebdal D, et al. (2019) The immune microenvironment in non-small cell lung cancer is predictive of prognosis after surgery. Mol Oncol, 13(5): 1166-1179. [DOI:10.1002/1878-0261.12475]
32. Tanaka A and Sakaguchi S (2019) Targeting treg cells in cancer immunotherapy. Eur J Immunol, 49(8): 1140-1146. [DOI:10.1002/eji.201847659]
33. Schulze AB, Evers GD, Görlich M, et al. (2020) Tumor infiltrating t cells influence prognosis in stage i-iii non-small cell lung cancer. J Thorac Dis, 12(5): 1824-1842. [DOI:10.21037/jtd-19-3414a]
34. Kayser G, Schulte-Uentrop L, Sienel W, et al. (2012) Stromal cd4/cd25 positive t-cells are a strong and independent prognostic factor in non-small cell lung cancer patients, especially with adenocarcinomas. Lung Cancer, 76(3): 445-51. [DOI:10.1016/j.lungcan.2012.01.004]
35. Kotsakis A, Koinis F, Katsarou A, et al. (2016) Prognostic value of circulating regulatory t cell subsets in untreated non-small cell lung cancer patients. Sci Rep, 6: 39247. [DOI:10.1038/srep39247]
36. Göschl L, Scheinecker C, Bonelli M (2019) Treg cells in autoimmunity: from identification to treg-based therapies. Semin Immunopathol, 41(3): 301-314. [DOI:10.1007/s00281-019-00741-8]
37. Kagamu H, S kitano O, Yamaguchi K, et al. (2020) cd4(+) t-cell immunity in the peripheral blood correlates with response to anti-PD-1 therapy. Cancer Immunol Res, 8(3): 334-344. [DOI:10.1158/2326-6066.CIR-19-0574]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chen Y, Chen S, Li Y, Guo X, Liang Q, L. Yang et al . Expression of regulatory T cells in driver-gene-negative advanced non-small cell lung cancer as well as its effect on the therapeutic efficacy and prognosis of immune checkpoint inhibitors. Int J Radiat Res 2024; 22 (2) :449-455
URL: http://ijrr.com/article-1-5468-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 2 (4-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4657