[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 3 (7-2024) ::
Int J Radiat Res 2024, 22(3): 565-572 Back to browse issues page
Improvement of the accuracy of radioactivity analysis using gamma spectroscopy by reducing the compton continuum of 40K gamma spectrum
T.Y.H. Huynh , H.N.T. Truong , H.L. Trinh , V.T. Nguyen , C.H. Le
Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Vietnam , nvthang@hcmus.edu.vn
Abstract:   (1139 Views)
Background: During the analysis of certain natural radionuclides in plant samples using gamma spectroscopy, the presence of 40K in the sample causes the overlap of its Compton region with the full energy peaks of 238U, 232Th, and their daughter. Therefore, it is necessary to remove potassium before the measurement to enhance analytical accuracy. Materials and Methods: Five different plant samples were used to validate the method. For each sample, the analysis was performed using two separation methods (original and K-separation), and both were measured with the gamma detector. Comparison of the results achieved using the two methods with regard to spectrum, peak-to-total ratio, obtained activity, and minimum detectable activity (MDA) indicated that the proposed method yielded improved results. Results: The separation procedure removed most of potassium present in the samples. The peak-to-total of energy peaks < 1000 keV increased significantly. The spectrum after K-separation exhibited a lower continuum under the peaks, and the shapes of the peaks were more identifiable. Comparison of MDA values derived before and after the application of K-separation showed an improvement in analytical accuracy. Conclusion: The removal of potassium from plant samples is effective in decreasing the MDA of the spectroscopy by reducing the Compton continuum of the 40K isotope under the energy peaks of interest. Therefore, the application of this method can augment the measurement possibilities for samples with low radioactivity.
Keywords: Chemical separation, Compton continuum, minimum detection activity, gamma spectrum
Full-Text [PDF 1316 kb]   (269 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Knoll GF (2010) Radiation detection and measurement. 4th ed. New York, NY: John Wiley & Sons.
2. Zehringer MR (2017) Gamma-Ray Spectrometry and the Investigation of Environmental and Food Samples, New Insights on Gamma Rays. Intech Open. [DOI:10.5772/67099]
3. Buchtela K (2019) Radiochemical methods | Gamma-Ray Spectrometry, Encyclopedia of Analytical Science (Third Edition), Academic Press.
4. Radulescu I, Blebea-Apostu AM, Margineanu RM, et al. (2013) Background radiation reduction for a high-resolution gamma-ray spectrometer used for environmental radioactivity measurements. Nucl Instrum Methods Phys Res A 715: 112-118. [DOI:10.1016/j.nima.2013.03.024]
5. Canberra Industries (2004) Genie 2000 version 30-customization tools manual. Canberra Industries Inc., Meriden.
6. Chinnaesakki S, Bara SV, Sartandel SJ, et al. (2012) Performance of HPGe gamma spectrometry system for the measurement of low level radioactivity. J Radioanal Nucl Chem 294: 143-147. [DOI:10.1007/s10967-011-1607-8]
7. Moiseev DV and Lukina LI (2020) Improving the accuracy of gamma radiation measurements in radiation monitoring. IOP Conf Ser: Earth Environ Sci 548: 032009. [DOI:10.1088/1755-1315/548/3/032009]
8. Gawad KAE, Zhang Z, Hazza MH (2020) Improving the analysis performance of gamma spectrometer using the Monte Carlo code for accurate measurements of uranium samples, Results Physics 17: 103145. [DOI:10.1016/j.rinp.2020.103145]
9. Manolopoulou M, Stoulos S, Mironaki D, Papastefanou C (2003) A new technique for the accurate measurement of 226Ra by gamma spectroscopy in voluminous samples. Nucl Instrum Methods Phys Res A 508: 362-366. [DOI:10.1016/S0168-9002(03)01701-7]
10. British Standard (2005) Measurement of radioactivity in the environment-Soil. BS ISO 18589 - 1: 2005.
11. Jelena NP, Deborah HO, Brit S (2020) Transfer of naturally occurring radionuclides from soil to wild forest flora in an area with enhanced legacy and natural radioactivity in Norway. Environ Sci: Processes Impacts 22: 350-363. [DOI:10.1039/C9EM00408D]
12. Nguyen TD, Duong VH, Bui VL, et al. (2021) Natural radionuclides and assessment of radiological hazards in Muong Hum, Lao Cai, Vietnam. Chemosphere 270: 128671. [DOI:10.1016/j.chemosphere.2020.128671]
13. Perevoshchikov R, Perminova A, Menshikova E (2022) Natural Radionuclides in Soils of Natural-Technogenic Landscapes in the Impact Zone of Potassium Salt Mining. Minerals 12: 1352. [DOI:10.3390/min12111352]
14. Polaczek-Grelik K, Kisiel J, Walencik-Łata A, et al. (2016) Lead shielding efficiency from the gamma background measurements in the salt cavern of the Polkowice-Sieroszowice copper mine. J Radioanal Nucl Chem 308: 773-780. [DOI:10.1007/s10967-015-4567-6]
15. Ali MDM, Eisa MEM, Mars JA (2021) Study of gamma rays shielding parameters of some building materials used in Sudan. Int J Radiat Res 19(1): 191-196 [DOI:10.29252/ijrr.19.1.191]
16. Alghamdi AS, Aleissa KA (2015) Ultra-low-background gamma spectroscopy for the measurement of environmental samples. J Radioanal Nucl Chem 303: 479-484. [DOI:10.1007/s10967-014-3404-7]
17. Thiesse M, Scovell P, Thompson L (2022) Background shielding by dense samples in low-level gamma spectrometry. Appl Radiat Iso 188: 110384. [DOI:10.1016/j.apradiso.2022.110384]
18. Mitra MS, Sarkar PK (2005) Monte Carlo simulations to estimate the background spectrum in a shielded NaI(Tl) γ-spectrometric system. Appl Radiat Iso 63: 415-422. [DOI:10.1016/j.apradiso.2005.05.047]
19. Li S, Wang L, Cheng Y, et al. (2016) A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement. Appl Radiat Iso 108: 75-81. [DOI:10.1016/j.apradiso.2015.12.036]
20. Riyadh M, Al-Hamzawi AA (2023) Natural radionuclides and radiological hazards in sediment samples of the Euphrates River in Al Diwaniyah governorate, Iraq. Int J Radiat Res 21(1): 159-162
21. Eke BC, Ukewuihe UM, Akomolafe IR (2022) Evaluation of activity concentration of natural radionuclides and lifetime cancer risk in soil samples at two tertiary institutions in Owerri, Imo State. Nigeria. Int J Radiat Res 20(3): 671-678
22. Onjefu SA, Johannes NN, Abah J, et al. (2022) Natural radioactivity levels and evaluation of radiological hazards in Usakos marble, Erongo region, Namibia. Int J Radiat Res 20(2): 403-409. [DOI:10.52547/ijrr.20.2.22]
23. Arnold D, Debertin K, Heckel A, et al. (2018) Fundamentals of gamma spectrometry. Federal Ministry for Environment, Nature Conservation and Nuclear Safety (Germany).
24. Inoue M, Kofuji H, Yamamoto M, et al. (2003) Application of low background gamma-ray spectrometry to environmental monitoring samples: Water leaching treatment for 40K-removal. J Radioanal Nucl Chem 255: 211-215. [DOI:10.1023/A:1022277125101]
25. Scates W, Hartwell JK, Aryaeinejad R, McIlwain ME (2006) Optimization studies of a Compton suppression spectrometer using experimentally validated Monte Carlo simulations. Nucl Instrum Methods Phys Res A 556: 498-504 [DOI:10.1016/j.nima.2005.09.044]
26. Jung HS, Cho HY, Lee JH, Lee CS (2007) Improvement of the Compton suppression ratio of a standard BGO suppressor system by a digital pulse shape analysis. Nucl Instrum Methods Phys Res A 580: 1016-1019 [DOI:10.1016/j.nima.2007.06.058]
27. Changizi V, Jafarpoor Z, Naseri M (2010) Measurement of 226Ra, 228Ra, 137Cs and 40K in edible parts of two types of leafy vegetables cultivated in Tehran Province-Iran and resultant annual ingestion radiation dose. Iran. J. Radiat. Res. 8: 103-110.
28. Oyekunle JAO, Ogundele KT, Adekunle AS, et al. (2019) An Assessment of Radiological Hazard Levels in Vegetables and Condiments Obtained from Ile-Ife Main Market, Ile-Ife, Nigeria Inter J Sci Res Pubs (IJSRP) 9(6): p90105. [DOI:10.29322/IJSRP.9.06.2019.p90105]
29. Robison WL, Hamilton TF, Conrado CL, et al. (2006) Uptake of Cesium-137 by leafy vegetables and grains from calcareous soils. Lawrence Livermore National Laboratory, Livermore, CA, United States of America, IAEA-TECDOC-1497.
30. Saeed MA, Wahab NAA, Hossain I, et al. (2011) Measuring radioactivity level in various types of rice sing hyper pure germanium. Inter J Phys Sci 6: 7335 - 7340. [DOI:10.5897/IJPS11.1345]
31. Tomarchio E, Giardina M, Buffa, P (2023) A baseline estimation procedure to improve MDA evaluation in gamma-ray spectrometry. Eur Phys J Plus 138: 700. [DOI:10.1140/epjp/s13360-023-04308-3]
32. Done L, Loan MR (2016) Minimum Detectable Activity in gamma spectrometry and its use in low level activity measurements. Appl Radiat Iso 114:28-32. [DOI:10.1016/j.apradiso.2016.05.004]
33. Scates W, Hartwell JK, Aryaeinejad R, et al. (2006) Optimization studies of a Compton suppression spectrometer using experimentally validated Monte Carlo simulations. Nucl Inst Meth Phys Res A 556: 498-504. [DOI:10.1016/j.nima.2005.09.044]
34. Cai SL, Cai X, Wu ZZ, et al. (2015) Simulation of background reduction and Compton suppression in a low-background HPGe spectrometer at a surface laboratory. Chinese Phys. C 39 086002. [DOI:10.1088/1674-1137/39/8/086002]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Huynh T, Truong H, Trinh H, Nguyen V, Le C. Improvement of the accuracy of radioactivity analysis using gamma spectroscopy by reducing the compton continuum of 40K gamma spectrum. Int J Radiat Res 2024; 22 (3) :565-572
URL: http://ijrr.com/article-1-5589-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 3 (7-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.11 seconds with 50 queries by YEKTAWEB 4704