1. 1. Knoll GF (2010) Radiation detection and measurement. 4th ed. New York, NY: John Wiley & Sons. 2. Zehringer MR (2017) Gamma-Ray Spectrometry and the Investigation of Environmental and Food Samples, New Insights on Gamma Rays. Intech Open. [ DOI:10.5772/67099] 3. Buchtela K (2019) Radiochemical methods | Gamma-Ray Spectrometry, Encyclopedia of Analytical Science (Third Edition), Academic Press. 4. Radulescu I, Blebea-Apostu AM, Margineanu RM, et al. (2013) Background radiation reduction for a high-resolution gamma-ray spectrometer used for environmental radioactivity measurements. Nucl Instrum Methods Phys Res A 715: 112-118. [ DOI:10.1016/j.nima.2013.03.024] 5. Canberra Industries (2004) Genie 2000 version 30-customization tools manual. Canberra Industries Inc., Meriden. 6. Chinnaesakki S, Bara SV, Sartandel SJ, et al. (2012) Performance of HPGe gamma spectrometry system for the measurement of low level radioactivity. J Radioanal Nucl Chem 294: 143-147. [ DOI:10.1007/s10967-011-1607-8] 7. Moiseev DV and Lukina LI (2020) Improving the accuracy of gamma radiation measurements in radiation monitoring. IOP Conf Ser: Earth Environ Sci 548: 032009. [ DOI:10.1088/1755-1315/548/3/032009] 8. Gawad KAE, Zhang Z, Hazza MH (2020) Improving the analysis performance of gamma spectrometer using the Monte Carlo code for accurate measurements of uranium samples, Results Physics 17: 103145. [ DOI:10.1016/j.rinp.2020.103145] 9. Manolopoulou M, Stoulos S, Mironaki D, Papastefanou C (2003) A new technique for the accurate measurement of 226Ra by gamma spectroscopy in voluminous samples. Nucl Instrum Methods Phys Res A 508: 362-366. [ DOI:10.1016/S0168-9002(03)01701-7] 10. British Standard (2005) Measurement of radioactivity in the environment-Soil. BS ISO 18589 - 1: 2005. 11. Jelena NP, Deborah HO, Brit S (2020) Transfer of naturally occurring radionuclides from soil to wild forest flora in an area with enhanced legacy and natural radioactivity in Norway. Environ Sci: Processes Impacts 22: 350-363. [ DOI:10.1039/C9EM00408D] 12. Nguyen TD, Duong VH, Bui VL, et al. (2021) Natural radionuclides and assessment of radiological hazards in Muong Hum, Lao Cai, Vietnam. Chemosphere 270: 128671. [ DOI:10.1016/j.chemosphere.2020.128671] 13. Perevoshchikov R, Perminova A, Menshikova E (2022) Natural Radionuclides in Soils of Natural-Technogenic Landscapes in the Impact Zone of Potassium Salt Mining. Minerals 12: 1352. [ DOI:10.3390/min12111352] 14. Polaczek-Grelik K, Kisiel J, Walencik-Łata A, et al. (2016) Lead shielding efficiency from the gamma background measurements in the salt cavern of the Polkowice-Sieroszowice copper mine. J Radioanal Nucl Chem 308: 773-780. [ DOI:10.1007/s10967-015-4567-6] 15. Ali MDM, Eisa MEM, Mars JA (2021) Study of gamma rays shielding parameters of some building materials used in Sudan. Int J Radiat Res 19(1): 191-196 [ DOI:10.29252/ijrr.19.1.191] 16. Alghamdi AS, Aleissa KA (2015) Ultra-low-background gamma spectroscopy for the measurement of environmental samples. J Radioanal Nucl Chem 303: 479-484. [ DOI:10.1007/s10967-014-3404-7] 17. Thiesse M, Scovell P, Thompson L (2022) Background shielding by dense samples in low-level gamma spectrometry. Appl Radiat Iso 188: 110384. [ DOI:10.1016/j.apradiso.2022.110384] 18. Mitra MS, Sarkar PK (2005) Monte Carlo simulations to estimate the background spectrum in a shielded NaI(Tl) γ-spectrometric system. Appl Radiat Iso 63: 415-422. [ DOI:10.1016/j.apradiso.2005.05.047] 19. Li S, Wang L, Cheng Y, et al. (2016) A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement. Appl Radiat Iso 108: 75-81. [ DOI:10.1016/j.apradiso.2015.12.036] 20. Riyadh M, Al-Hamzawi AA (2023) Natural radionuclides and radiological hazards in sediment samples of the Euphrates River in Al Diwaniyah governorate, Iraq. Int J Radiat Res 21(1): 159-162 21. Eke BC, Ukewuihe UM, Akomolafe IR (2022) Evaluation of activity concentration of natural radionuclides and lifetime cancer risk in soil samples at two tertiary institutions in Owerri, Imo State. Nigeria. Int J Radiat Res 20(3): 671-678 22. Onjefu SA, Johannes NN, Abah J, et al. (2022) Natural radioactivity levels and evaluation of radiological hazards in Usakos marble, Erongo region, Namibia. Int J Radiat Res 20(2): 403-409. [ DOI:10.52547/ijrr.20.2.22] 23. Arnold D, Debertin K, Heckel A, et al. (2018) Fundamentals of gamma spectrometry. Federal Ministry for Environment, Nature Conservation and Nuclear Safety (Germany). 24. Inoue M, Kofuji H, Yamamoto M, et al. (2003) Application of low background gamma-ray spectrometry to environmental monitoring samples: Water leaching treatment for 40K-removal. J Radioanal Nucl Chem 255: 211-215. [ DOI:10.1023/A:1022277125101] 25. Scates W, Hartwell JK, Aryaeinejad R, McIlwain ME (2006) Optimization studies of a Compton suppression spectrometer using experimentally validated Monte Carlo simulations. Nucl Instrum Methods Phys Res A 556: 498-504 [ DOI:10.1016/j.nima.2005.09.044] 26. Jung HS, Cho HY, Lee JH, Lee CS (2007) Improvement of the Compton suppression ratio of a standard BGO suppressor system by a digital pulse shape analysis. Nucl Instrum Methods Phys Res A 580: 1016-1019 [ DOI:10.1016/j.nima.2007.06.058] 27. Changizi V, Jafarpoor Z, Naseri M (2010) Measurement of 226Ra, 228Ra, 137Cs and 40K in edible parts of two types of leafy vegetables cultivated in Tehran Province-Iran and resultant annual ingestion radiation dose. Iran. J. Radiat. Res. 8: 103-110. 28. Oyekunle JAO, Ogundele KT, Adekunle AS, et al. (2019) An Assessment of Radiological Hazard Levels in Vegetables and Condiments Obtained from Ile-Ife Main Market, Ile-Ife, Nigeria Inter J Sci Res Pubs (IJSRP) 9(6): p90105. [ DOI:10.29322/IJSRP.9.06.2019.p90105] 29. Robison WL, Hamilton TF, Conrado CL, et al. (2006) Uptake of Cesium-137 by leafy vegetables and grains from calcareous soils. Lawrence Livermore National Laboratory, Livermore, CA, United States of America, IAEA-TECDOC-1497. 30. Saeed MA, Wahab NAA, Hossain I, et al. (2011) Measuring radioactivity level in various types of rice sing hyper pure germanium. Inter J Phys Sci 6: 7335 - 7340. [ DOI:10.5897/IJPS11.1345] 31. Tomarchio E, Giardina M, Buffa, P (2023) A baseline estimation procedure to improve MDA evaluation in gamma-ray spectrometry. Eur Phys J Plus 138: 700. [ DOI:10.1140/epjp/s13360-023-04308-3] 32. Done L, Loan MR (2016) Minimum Detectable Activity in gamma spectrometry and its use in low level activity measurements. Appl Radiat Iso 114:28-32. [ DOI:10.1016/j.apradiso.2016.05.004] 33. Scates W, Hartwell JK, Aryaeinejad R, et al. (2006) Optimization studies of a Compton suppression spectrometer using experimentally validated Monte Carlo simulations. Nucl Inst Meth Phys Res A 556: 498-504. [ DOI:10.1016/j.nima.2005.09.044] 34. Cai SL, Cai X, Wu ZZ, et al. (2015) Simulation of background reduction and Compton suppression in a low-background HPGe spectrometer at a surface laboratory. Chinese Phys. C 39 086002. [ DOI:10.1088/1674-1137/39/8/086002]
|