[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 3 (7-2024) ::
Int J Radiat Res 2024, 22(3): 631-637 Back to browse issues page
Effects of different doses of computed tomography radiation on the oxidation markers, antioxidant enzymes, and lipid profiles of male albino rats
K.C. Ogbanya , E.K. Mgbe , E.O. Modebe , I.G. Abah , T.O. Nnaji
Department of Radiation Medicine, University of Nigeria, Teaching Hospital, Enugu, Nigeria , emeka.mgbe@unn.edu.ng
Abstract:   (272 Views)
Background: The study investigates the effects of four different doses of computed tomography (CT) x-ray radiation on the oxidation markers, endogenous antioxidant enzymes, and lipid profiles of male Wistar albino rats. Materials and methods: Thirty healthy male Wistar albino rats weighing 180-200g were assigned into five groups of 6 rats each. Rats in groups A, B, C, and D underwent non-contrast helical total body irradiation and received varying doses of CT radiation, while group E received sham irradiation and served as a control. Glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) activities, serum levels of malondialdehyde (MDA), oxidized glutathione (GSSG), nitric oxide (NO), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides were investigated using standard methods. Results: At 72 hours’ post-irradiation, the mean serum activities of GPx, SOD, and CAT in the irradiated groups decreased significantly, while the serum levels of MDA, GSSG, TC, and LDL increased significantly compared to the control. Conclusion: The four different doses of CT radiation in the current study caused a significant decline in the endogenous antioxidant enzymes (GPx, SOD, and CAT) and, in contrast, induced a significant serum elevation of MDA and GSSG in the irradiated rats. The LDC and TC mean serum levels were also significantly elevated in the irradiated groups.
Keywords: Rats, antioxidants, catalase, glutathione disulfide, nitric oxide, whole-body CT radiation.
Full-Text [PDF 638 kb]   (47 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Esses D, Birnbaum A, Bijur P, et al. (2004) Ability of CT to alter decision making in elderly patients with acute abdominal pain. Am J Emerg Med, 22: 270-272 [DOI:10.1016/j.ajem.2004.04.004]
2. Mettler FA, Thomadsen BR, Bhargavan M, et al. (2008) Medical radiation exposure in the U.S. in 2006: preliminary results. Health Phys, 95: 502-507 [DOI:10.1097/01.HP.0000326333.42287.a2]
3. Hricak H, Brenner DJ, Adelstein SJ, et al. (2011) Managing radiation use in medical imaging: a multifaceted challenge. Radiology, 258: 889-905 [DOI:10.1148/radiol.10101157]
4. van Randen A, Bipat S, Zwinderman AH, et al. (2008) Acute appendicitis: meta-analysis of diagnostic performance of CT and graded compression US related to prevalence of disease. Radiology, 249: 97-106. [DOI:10.1148/radiol.2483071652]
5. Power SP, Moloney F, Twomey M, et al. (22016) Computed tomography and patient risk: Facts, perceptions and uncertainties. World J Radiol, 8(12): 902-915. [DOI:10.4329/wjr.v8.i12.902]
6. Smith-Bindman R, Miglioretti DL, Johnson E, et al. (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996-2010. JAMA, 307: 2400-2409 [DOI:10.1001/jama.2012.5960]
7. Freudenberg LS and Beyer T (2011) Subjective perception of radiation risk. J Nucl Med, 52(2): 29S-35S. [DOI:10.2967/jnumed.110.085720]
8. Gunduz AM, Demir H, Toprak N, et al. (2020) The effect of computed tomography on oxidative stress level and some antioxidant parameters. Acta Radiol, doi: 10.1177/0284185120922135. [DOI:10.1177/0284185120922135]
9. Bryll A, Krzys'ciak W, Jurczak A, et al. (2019) Changes in the Selected antioxidant defense parameters in the blood of patients after high resolution computed tomography. Inter J Environ Res Public Health, 16: 1476. [DOI:10.3390/ijerph16091476]
10. Ertekin MV, Kocer I, Karslioglu I, et al. (2004) Effects of oral ginkgo biloba supplementation on cataract and oxidative stress occurring in lenses of the rat exposed to total cranium radiotherapy. Jpn J Ophthalmol, 48: 499-502. [DOI:10.1007/s10384-004-0101-z]
11. King J (2021) Oxidative Stress: Harms and Benefits for Human Health. J Pollution Effects and Control, 9: 317.
12. Shang F, Lu M, Dudek E, Reddan J, et al. (2003) Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. Free Radic Biol Med, 34: 521-530. [DOI:10.1016/S0891-5849(02)01304-7]
13. Karslio˘glu I, Ertekin MV, Taysi S, et al. (2005) Radioprotective Effects of Melatonin on Radiation-Induced Cataract. J Radiat Res, 46: 277-282. [DOI:10.1269/jrr.46.277]
14. Noaman E, Zahran A, Kamal AM, et al. (2002) Vitamin E and selenium administration as a modulator of antioxidant defense system: biochemical assessment and modification. Biol Trace Elem Res, 86: 5-64. [DOI:10.1385/BTER:86:1:55]
15. Rendic S and Guengerich FP (2012) Summary of information on the effects of ionizing and non-ionizing radiation on cytochrome P450 and other drug metabolizing enzymes and transporters. Curr Drug Metab, 13(6): 787-814. [DOI:10.2174/138920012800840356]
16. Leach JK, Black SM, Schmidt-Ullrich, et al. (2002) Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. J Biol Chem, 277(18): 15400 - 15406. [DOI:10.1074/jbc.M110309200]
17. Avunduk AM, Yardimci S, Avunduk MC, et al. (2000) A possible mechanism of X-ray induced injury in rat lens. Jpn J Ophthalmol, 44: 88-91. [DOI:10.1016/S0021-5155(99)00169-0]
18. Bardak Y, Ozerturk Y, Ozguner F, et al. (2000) Effect of melatonin against oxidative stress in ultraviolet-B exposed rat lens. Curr Eye Res, 20: 225-230. [DOI:10.1076/0271-3683(200003)2031-9FT225]
19. Maia G, de Oliveira Renó C, Medina JM, et al. (2014) The effect of gamma radiation on the lipid profile of irradiated red blood cells. Ann Hematol, 93: 753-760. [DOI:10.1007/s00277-013-1944-5]
20. Drobyski W, Thibodeau S, Truitt RL, et al. (1989) Third-party-mediated graft rejection and graft-versus-host disease after T cell-depleted bone marrow transplantation, as demonstrated by hypervariable DNA probes and HLA-DR polymorphism. Blood, 74(6): 2285-2294. [DOI:10.1182/blood.V74.6.2285.2285]
21. Cicha I, Suzuki Y, Tateishi N, et al. (2000) Gamma-ray-irradiated red blood cells stored in mannitol-adenine-phosphate medium: rheological evaluation and susceptibility to oxidative stress. Vox Sanguini, 79(2): 75-82. [DOI:10.1046/j.1423-0410.2000.7920075.x]
22. Yang K and Han X (2016) Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci, 41(11): 954-969. [DOI:10.1016/j.tibs.2016.08.010]
23. Su LJ, Zhang JH, Gomez H, et al. (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis: Review. Oxidative Medicine and Cellular Longevity, https://doi.org/10.1155/2019/5080843 [DOI:10.1155/2019/5080843.]
24. Bahrami S, Shahriari A, Tavalla M, et al. (2016) Blood levels of oxidant/antioxidant parameters in rats infected with Toxoplasma gondii. Oxidative Medicine and Cellular Longevity, http://dx.doi.org/10.1155/2016/8045969. [DOI:10.1155/2016/8045969]
25. Koroliuk MA, Ivanova LI and Maiorovaetal IG (1988) A method of determining catalase activity. Laboratornoe Delo, 1: 16-19.
26. Placer ZA, Cushman LL and Johnson BC (1966) Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems. Anal Biochem, 16(2): 359-364. [DOI:10.1016/0003-2697(66)90167-9]
27. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2 vinylpyridine. Anal Biochem, 106(1): 207-212. [DOI:10.1016/0003-2697(80)90139-6]
28. Beutler E and Kuhl W (1975) Subunit structure of human hexosaminidase verified: interconvertibility of hexosaminidase isozymes. Nature, 258: 262-264. [DOI:10.1038/258262a0]
29. Sun J, Zhang X, Broderick M and Fein H (2003) Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. Sensors, 3: 276-284. [DOI:10.3390/s30800276]
30. Allan R and Roxon J (1974) Metabolism by intestinal bacteria: The effect of bile salts on tartrazine azo reduction. Xenobiotica, 4: 637-647. [DOI:10.1080/00498257409169766]
31. Demacer PN, Vos-Janssen HE, Hijmans AGM, et al. (1980) Measurement of high density lipoprotein cholesterol in serum: comparison of sex isolation methods combined with enzymatic cholesterol analysis. Clin Chem, 26(13): 178-186. [DOI:10.1093/clinchem/26.13.1780]
32. Friedewald WT, Levy RI and Fredrickson D (1972) Estimation of concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem, 18(6): 499. [DOI:10.1093/clinchem/18.6.499]
33. Fossati P and Prencipe L (1982) Serum triglyceride determined colourimetrically with an enzyme that produce hydrogen peroxide. Clin Chem, 28: 2077. [DOI:10.1093/clinchem/28.10.2077]
34. Ighodaro OM and Akinloye OA (2018) First line defense antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defense grid. Alexandria J Med, 54: 287-293. [DOI:10.1016/j.ajme.2017.09.001]
35. Rosa AC, Corsi D, Cavi N, et al. (2021) Superoxide dismutase administration: A review of proposed human uses. Molecules, 26: 1884. [DOI:10.3390/molecules26071844]
36. Li S, Yang X, Feng Z, et al. (2018) Catalase enhances viability of human chondrocytes in culture by reducing reactive oxygen species and counteracting tumor necrosis factor-α-induced apoptosis. Cell Physiol Biochem, 49:6: 2427-2442. [DOI:10.1159/000493841]
37. Smith TA, Kirkpatrick DR, Smith S, et al. (2017) Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med, 15: 232. [DOI:10.1186/s12967-017-1338-x]
38. Oriquat GA and Ammari WG (2018) Biochemical effects of low-dose whole body x-irradiation on mouse liver and the protective action of ectoine. Trop J Pharm Res, 17(11): 2207-2211. [DOI:10.4314/tjpr.v17i11.14]
39. Celik H, Koyuncu I, Karakılcık AZ, et al. (2016) Effects of ionizing and non-ionizing radiation on oxidative stress and the total antioxidant status in humans working in radiation environments. Bezmialem Sci, 3: 106-109. [DOI:10.14235/bs.2016.872]
40. Shedid SM, El-Tawill GhA, Algeda FR, et al. (2019) The Impact of 950MHz Electromagnetic Radiation on the Brain and Liver of Rats and the Role of Garlic Treatment. Egypt J Rad Sc Applic, 32(1): 51 - 56. [DOI:10.21608/ejrsa.2019.7814.1063]
41. Gecit I, Karak S and Yuksel MB (2014) Effect of short term treatment with levosimendan on antioxidant stress in renal tissues of rats. Toxicol Ind Health, 30: 47-51. [DOI:10.1177/0748233712451773]
42. Saravanan M, Devi UK and Malarvizhi A (2012) Effects of ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp Cirrhinusmrigala. Environl Toxicol Pharmacol, 34(1): 14-22. [DOI:10.1016/j.etap.2012.02.005]
43. Moncada S, Palmer RJM and Higgs EA (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev, 43: 373-376.
44. Schmidt HH and Walter U (1994) NO at work. Cell, 78: 919-925. [DOI:10.1016/0092-8674(94)90267-4]
45. Hausladen A, Stamler JS. Nitrosative stress. Methods Enzymol 1999; 300: 389-395. [DOI:10.1016/S0076-6879(99)00143-3]
46. Murphy MP (1999) Nitric oxide and cell death. Biochimica et Biophysica Acta, 411: 401-414. [DOI:10.1016/S0005-2728(99)00029-8]
47. El-Bahkery AM and Mohammed MR (2021) Appraisal of the protective role of Punica granatum against biochemical and cytogenetic damages induced by γ-irradiation in rats. Egypt J Rad Sci Applic, 34(1&2): 105-115.
48. Ramadan FL (2007) Evaluation of the synergistic effect of danazol and radiation exposure on some biochemical functions in female albino rats. Egypt J Hosp Med, 27: 255- 262 [DOI:10.21608/ejhm.2007.17727]
49. Ragab EA and Ashry OM (2004) Lipid and carbohydrate metabolism in rats. Egypt J Rad Sci Applic, 17(2): 403-414.
50. Abou-Safi HM, Ashry OM and Kafafy YA (2005) Effect of N-acetyl-L-cysteine and -tocopherol administration on endogenous antioxidant protection of liver DNA and RNA and plasma lipid profile in -irradiated rats. Egypt J Sci Applc,18(1): 81-96
51. Karbownik M and Reiter RS (2000) Antioxidantative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med, 225 (1): 9-16. [DOI:10.1111/j.1525-1373.2000.22502.x]
52. El-Missiry MA, Fayed TA, El-Sawy MR, et al. (2007) Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury. Ecotoxicol Environ Saf, 66(2): 278-286. [DOI:10.1016/j.ecoenv.2006.03.008]
53. Onody A, Csonka C, Giricz Z, et al. (2003) Ferdinandy P. Hyperlipidemia induced by a cholesterol-rich diet leads to enhanced peroxynitrite formation in rat hearts. Cardiovasc Res, 58(3): 663-670. [DOI:10.1016/S0008-6363(03)00330-4]
54. Saada HN, Ussama ZS and Mahdy AM (2003) Effectiveness of Aloe vera on the antioxidant status of different tissues in irradiated rats. Pharmazie, 58(12): 929-931.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ogbanya K, Mgbe E, Modebe E, Abah I, Nnaji T. Effects of different doses of computed tomography radiation on the oxidation markers, antioxidant enzymes, and lipid profiles of male albino rats. Int J Radiat Res 2024; 22 (3) :631-637
URL: http://ijrr.com/article-1-5612-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 3 (7-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4660