[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 3 (7-2024) ::
Int J Radiat Res 2024, 22(3): 691-696 Back to browse issues page
Rapid and safe installation of linear accelerators using vendor commissioning support and additional user commissioning
S. Okahira , Y. Tanabe , T. Sasaki , A. Yamane , T. Nakayama , A. Osaka , Y. Fuji
Faculty of Medicine, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata, Kita, Okayama 700-8525, Japan , tanabey@okayama-u.ac.jp
Abstract:   (181 Views)
Background: The successful installation of linear accelerators (LINACs) depends on operator skill and experience, and its optimization can be further improved using vendor commissioning support. To facilitate the introduction of LINAC, Elekta provides commissioning support through Accelerated Go Live (AGL) using representative beam data. This study aimed to evaluate the effective commissioning of LINAC-assisted AGL complemented by additional measurements conducted by a user. Materials and Methods: Output doses were measured within a field size of > 3 cm2 using a single chamber with AGL and within a field size of > 2 cm2 using three types of optimal chambers based on the field size adopted by the user. In all cases, the differences between the measured and calculated output doses were maintained at < 2%. Results: The accuracy of couch modeling was evaluated by measuring arc irradiation for three different field sizes, with the electron density value assigned as a dose difference of <2% between the measured and calculated values at 2% for all energies and field size of >3 cm2. Additionally, imaging scan parameters for cone beam computed tomography were optimized to reduce the radiation dose, in comparison to the initial vendor settings, by referencing IEC 60601-2-44 standards and examining results from neighboring facilities. Conclusions: AGL proved to be effective as a temporary check, but additional commissioning efforts by the user were necessary for a more thorough evaluation and more appropriate initiation, aligning with established clinical practices.
Keywords: Linear accelerator, accelerated go live, Vendor commissioning support.
Full-Text [PDF 817 kb]   (41 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Huq MS, Fraass BA, Dunscombe PB, Gibbons Jr, JP Ibbott GS, Mundt AJ, Mutic S, Palta JR, Rath F, Thomadsen BR, Williamson JF, Yorke ED (2016) The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management. Med. Phys. 43(7):4209-4262. [DOI:10.1118/1.4947547]
2. Can S, Karaçetin D, Meriç N (2022) Beam modeling and commissioning for Monte Carlo photon beam on an Elekta Versa HD LINAC. Appl. Radiat. Isot. 180:110054. [DOI:10.1016/j.apradiso.2021.110054]
3. Goodall SK, Dunn L, Dunning J, Muñoz L, Rowshanfarzad P, Ebert MA (2022) Matched linac stereotactic radiotherapy: An assessment of delivery similarity and distributive patient‐specific quality assurance feasibility. J. Appl. Clin. Med. Phys. 23(11): e13652. [DOI:10.1002/acm2.13652]
4. Firmansyah OA, Firmansyah AF, Sunaryati SI, Putri MM, Setiadi AR, Akbar OA, Arif V, Amelia C (2021) Implementation of beam matching concept for the new installed Elekta Precise Treatment System Medical LINACs in Indonesia. Atom Indonesia 47(3):181-189. [DOI:10.17146/aij.2021.1041]
5. Mijnheer B, Olszewska A, Fiorino C, Hartmann G, Knöös T, Rosenwald JC, Welleweerd H (2004) Quality assurance of treatment planning systems: practical examples for non-IMRT photon beams (Vol. 1). Brussels: Estro, 2004.
6. Van Dyk J, Rosenwald JC, Fraass B, Cramb J, Ionescu-Farca F, Sharpe MB (2006) IAEA Technical Reports Series No. 430: Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. Med. Phys. 33(2), https://www.iaea.org/publications/6974/commissioning-and-quality-assurance-of-computerized-planning-systems-for-radiation-treatment-of-cancer. [DOI:10.1118/1.2167371]
7. Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, Van Dyke J (1998) AAPM Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning. Med. Phys. 25(10):1773-1829. [DOI:10.1118/1.598373]
8. Nelms BE, Chan MF, Jarry G, Lemire M, Lowden J, Hampton C, Feygelman V (2013) Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels. Med. Phys. 40(11):111722. [DOI:10.1118/1.4826166]
9. Kunii Y, Tanabe Y, Nakamoto A, Nishioka K (2022) Statistical analysis of correlation of gamma passing results for two quality assurance phantoms used for patient-specific quality assurance in volumetric modulated arc radiotherapy. Med. Dosim. 47(4):329-333. [DOI:10.1016/j.meddos.2022.06.003]
10. Wexler A, Gu B, Goddu S, Mutic M, Yaddanapudi S, Olsen L, Harry T, Noel C, Pawlicki T, Mutic S, Cai B (2017) FMEA of manual and automated methods for commissioning a radiotherapy treatment planning system. Med. Phys. 44(9):4415-4425. [DOI:10.1002/mp.12278]
11. Maruyama D, Yanagisawa S, Koba Y, Andou T, Shinsho K (2020) Usefulness of thermoluminescent slab dosimeter for postal dosimetry audit of external radiotherapy systems. Sens. Mater. 32:1461-1477. [DOI:10.18494/SAM.2020.2697]
12. Van Prooijen M, Kanesalingam T, Islam MK, Heaton RK (2010) Assessment and management of radiotherapy beam intersections with the treatment couch. J. Appl. Clin. Med. Phys. 11(2):128-139. [DOI:10.1120/jacmp.v11i2.3171]
13. Olch AJ, Gerig L, Li H, Mihaylov I, Morgan A (2014) Dosimetric effects caused by couch tops and immobilization devices: report of AAPM Task Group 176. Med. Phys. 41(6Part1):061501. [DOI:10.1118/1.4876299]
14. Källman HE, Holmberg R, Andersson J, Kull L, Tranéus E, Ahnesjö A (2016) Source modeling for Monte Carlo dose calculation of CT examinations with a radiotherapy treatment planning system. Med. Phys. 43(11):6118-6128. [DOI:10.1118/1.4965043]
15. Isono M and Tatsumi D (2020) Install of radiation treatment delivery systems using reference beam data. Nippon Hoshasen Gijutsu Gakkai Zasshi (Online), 76(7):735-739. [DOI:10.6009/jjrt.2020_JJRT_76.7.735]
16. Kunii Y, Tanabe Y, Higashi A, Nakamoto A, Nishioka K (2023). Effects of high-resolution measurements between different multi-row detectors on volumetric modulated arc therapy patient-specific quality assurance. Int. J. Radiat. Res. 21(3):413-419. [DOI:10.61186/ijrr.21.3.413]
17. Das IJ, Cheng CW, Watts RJ, Ahnesjö A, Gibbons J, Li XA, Lowenstein J, Mitra RK, Simon WE, Zhu TC (2008) Accelerator beam data commissioning equipment and procedures: report of the TG‐106 of the Therapy Physics Committee of the AAPM. Med. Phys. 35(9):4186-4215. [DOI:10.1118/1.2969070]
18. Snyder JE, Hyer DE, Flynn RT, Boczkowski A, Wang D (2019) The commissioning and validation of Monaco treatment planning system on an Elekta Versa HD linear accelerator. J. Appl. Clin. Med. Phys. 20(1):184-193. [DOI:10.1002/acm2.12507]
19. Keivan H, Maskani R, Shahbazi-Gahrouei D, Shanei A, Pandesh S, Sereshke SE (2022). Evaluation of effective field size characteristics for small megavoltage photon beam dosimetry. Int. J. Radiat Res. 20(1):163-168. [DOI:10.52547/ijrr.20.1.25]
20. Lechner W, Wesolowska P, Azangwe G, Arib M, Alves VGL, Suming L, Ekendahl D, Bulski W, Samper JLA, Vinatha SP, Siri S, Tomse M, Tenhunen M, Povall J, Kry SF, Followill DS, Thwaites DI, Georg D, Izewska J (2018) A multinational audit of small field output factors calculated by treatment planning systems used in radiotherapy. Phys. Imaging Radiat. Oncol. 5:58-63. [DOI:10.1016/j.phro.2018.02.005]
21. Gao S, Balter PA, Rose M, Simon WE (2013) Measurement of changes in linear accelerator photon energy through flatness variation using an ion chamber array. Med. Phys. 40(4):042101. [DOI:10.1118/1.4791641]
22. Zhang RH, Fleckenstein J, Gao Y L, Miao MC, Chi Z., Bai WW (2019). Quantification and modelling of the dosimetric impact of the treatment couch in volumetric modulated arc therapy (VMAT). Int J Radiat Res, 17(2):335-344.
23. Goodall S, Harding N, Simpson J, Alexander L, Morgan S (2015) Clinical implementation of photon beam flatness measurements to verify beam quality. J. Appl. Clin. Med. Phys. 16(6):340-345. [DOI:10.1120/jacmp.v16i6.5752]
24. Poli E, Reis P, Prudencio L, Galhardas J, Ribeiro T, Malveiro R (2018) Validation of Elekta couch modeling for dose calculation in the Monaco treatment planning system. Radiother. Oncol. 127: S991. [DOI:10.1016/S0167-8140(18)32145-5]
25. Li H, Lee AK, Johnson JL, Zhu RX, Kudchadker RJ (2011) Characterization of dose impact on IMRT and VMAT from couch attenuation for two Varian couches. J. Appl. Clin. Med. Phys. 12(3):23-31. [DOI:10.1120/jacmp.v12i3.3471]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Okahira S, Tanabe Y, Sasaki T, Yamane A, Nakayama T, Osaka A et al . Rapid and safe installation of linear accelerators using vendor commissioning support and additional user commissioning. Int J Radiat Res 2024; 22 (3) :691-696
URL: http://ijrr.com/article-1-5635-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 3 (7-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4660