Radiology-Medical Imaging Center, Cancer Research Institute, Imam Khomeini Hospital Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences (TUMS), Tehran, Iran , nahmadinejad@TUMS.ac.ir
Abstract: (649 Views)
Background:The Breast dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is utilized for screening breast cancer (BC) in women with a total lifetime BC risk of greater than 20-25%. This study aimed to assess the DCE-MRI value in predicting response to neoadjuvant chemotherapy (NAC) in BC patients. Materials and Methods: International databases, including Medline, PubMed, Embase, and Science Direct, were searched with appropriate keywords. Using the binomial distribution formula, the variance of each study was calculated, and the data were analyzed using Stata 14. Finally, the results of the studies were inputted into the random-effect meta-analysis. Results: Sixteen studies, with no recognized publication bias by Begg’s test, comprising 1868 patients were involved in this study. The sensitivity of DCE-MRI was 0.693, whereas its specificity was 0.754, with 95% confidence intervals (CI) of 0.560-0.826 and 0.605-0.903, respectively. Based on the random-effect model, the results revealed a pooled positive and negative predictive value of 0.458 and 0.901, with 95% CI of 0.339-0.577 and 0.829-0.972, respectively. The pooled DCE-MRI accuracy in predicting pathologic complete response to NAC was 0.768 (95% CI: 0.720-0.817). Finally, a meta-analysis of 10 reports, revealed a pooled AUC 0.779 (95% CI: 0.702-0.856). Conclusion: Overall, the findings of our study revealed that the DCE-MRI is a sensitive and specific method with an acceptable NPV for predicting response to NAC in BC cases.
2. Naseem U, Rashid J, Ali L, Kim J, Haq QEU, Awan MJ, et al. An automatic detection of breast cancer diagnosis and prognosis based on machine learning using ensemble of classifiers. IEEE Access. 2022;10:78242-52. [DOI:10.1109/ACCESS.2022.3174599]
3. Ghayoumi Zadeh H, Masoumzadeh S, Nour S, Kianersi S, Eyvazi Zadeh Z, Joneidi Shariat Zadeh F, et al. Breast cancer diagnosis by thermal imaging in the fields of medical and artificial intelligence sciences. Tehran University Medical Journal TUMS Publications. 2016;74(6):377-85.
4. Milosevic M, Jankovic D, Milenkovic A, Stojanov D. Early diagnosis and detection of breast cancer. Technology and Health Care. 2018;26(4):729-59. [DOI:10.3233/THC-181277]
5. Jun W, Cong W, Xianxin X, Daqing J. Meta-analysis of quantitative dynamic contrast-enhanced MRI for the assessment of neoadjuvant chemotherapy in breast cancer. The American Surgeon. 2019;85(6):645-53. [DOI:10.1177/000313481908500630]
6. Pathak M, Dwivedi SN, Deo S, Thakur B, Sreenivas V, Rath G. Neoadjuvant chemotherapy regimens in treatment of breast cancer: a systematic review and network meta-analysis protocol. Systematic reviews. 2018;7(1):1-8. [DOI:10.1186/s13643-018-0754-1]
7. Bufi E, Belli P, Costantini M, Cipriani A, Di Matteo M, Bonatesta A, et al. Role of the apparent diffusion coefficient in the prediction of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Clinical Breast Cancer. 2015;15(5):370-80. [DOI:10.1016/j.clbc.2015.02.002]
8. Moradi B, Gity M, Etesam F, Borhani A, Ahmadinejad N, Kazemi MA. Correlation of apparent diffusion coefficient values and peritumoral edema with pathologic biomarkers in patients with breast cancer. Clinical Imaging. 2020;68:242-8. [DOI:10.1016/j.clinimag.2020.08.020]
9. Kim J, Oktay K, Gracia C, Lee S, Morse C, Mersereau JE. Which patients pursue fertility preservation treatments? A multicenter analysis of the predictors of fertility preservation in women with breast cancer. Fertility and sterility. 2012;97(3):671-6. [DOI:10.1016/j.fertnstert.2011.12.008]
10. Pilewskie M, Zabor EC, Mamtani A, Barrio AV, Stempel M, Morrow M. The optimal treatment plan to avoid axillary lymph node dissection in early-stage breast cancer patients differs by surgical strategy and tumor subtype. Annals of surgical oncology. 2017;24:3527-33. [DOI:10.1245/s10434-017-6016-y]
11. de Munck L, Sonke G, van Dalen T, van Diest P, van den Bongard H, Peeters P, et al. Population based study on sentinel node biopsy before or after neoadjuvant chemotherapy in clinically node negative breast cancer patients: Identification rate and influence on axillary treatment. European journal of cancer. 2015;51(8):915-21. [DOI:10.1016/j.ejca.2015.03.014]
12. Bear HD, Anderson S, Brown A, Smith R, Mamounas EP, Fisher B, et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. Journal of Clinical Oncology. 2003;21(22):4165-74. [DOI:10.1200/JCO.2003.12.005]
13. Kaufmann M, Hortobagyi GN, Goldhirsch A, Scholl S, Makris A, Valagussa P, et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update. Journal of Clinical Oncology. 2006;24(12):1940-9. [DOI:10.1200/JCO.2005.02.6187]
14. Ah-See MLW, Makris A, Taylor NJ, Harrison M, Richman PI, Burcombe RJ, et al. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clinical Cancer Research. 2008;14(20):6580-9. [DOI:10.1158/1078-0432.CCR-07-4310]
15. Abramson RG, Li X, Hoyt TL, Su P-F, Arlinghaus LR, Wilson KJ, et al. Early assessment of breast cancer response to neoadjuvant chemotherapy by semi-quantitative analysis of high-temporal resolution DCE-MRI: preliminary results. Magnetic resonance imaging. 2013;31(9):1457-64. [DOI:10.1016/j.mri.2013.07.002]
16. Almahariq MF, Quinn TJ, Siddiqui ZA, Thompson AB, Jawad MS, Chen PY, et al. Post-mastectomy radiotherapy is associated with improved overall survival in T3N0 patients who do not receive chemotherapy. Radiotherapy and Oncology. 2020;145:229-37. [DOI:10.1016/j.radonc.2020.01.022]
17. Cassidy MR, Zabor EC, Stempel M, Mehrara B, Gemignani ML. Does response to neo‐adjuvant chemotherapy impact breast reconstruction? The breast journal. 2018;24(4):567-73. [DOI:10.1111/tbj.12977]
18. Gubern-Mérida A, Martí R, Melendez J, Hauth JL, Mann RM, Karssemeijer N, et al. Automated localization of breast cancer in DCE-MRI. Medical image analysis. 2015;20(1):265-74. [DOI:10.1016/j.media.2014.12.001]
19. Ahmadinejad N, Azhdeh S, Arian A, Eslami B, Mehrabinejad M-M. Implementation of abbreviated breast MRI in diagnostic and screening settings. Acta Radiologica. 2022:02841851221114434. [DOI:10.1177/02841851221114434]
20. Knopp M, Weiss E, Sinn H, Mattern J, Junkermann H, Radeleff J, et al. Pathophysiologic basis of contrast enhancement in breast tumors. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine. 1999;10(3):260-6.
https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<260::AID-JMRI6>3.0.CO;2-7 [DOI:10.1002/(SICI)1522-2586(199909)10:33.0.CO;2-7]
21. Turnbull LW. Dynamic contrast‐enhanced MRI in the diagnosis and management of breast cancer. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo. 2009;22(1):28-39. [DOI:10.1002/nbm.1273]
22. Gordon Y, Partovi S, Müller-Eschner M, Amarteifio E, Bäuerle T, Weber MA, et al. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion. Cardiovascular diagnosis and therapy. 2014;4(2):147.
23. Johansen R, Jensen LR, Rydland J, Goa PE, Kvistad KA, Bathen TF, et al. Predicting survival and early clinical response to primary chemotherapy for patients with locally advanced breast cancer using DCE‐MRI. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2009;29(6):1300-7. [DOI:10.1002/jmri.21778]
24. Fan M, Wu G, Cheng H, Zhang J, Shao G, Li L. Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients. European journal of radiology. 2017;94:140-7. [DOI:10.1016/j.ejrad.2017.06.019]
25. Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B. Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. JNCI Monographs. 2001;2001(30):96-102. [DOI:10.1093/oxfordjournals.jncimonographs.a003469]
26. Mauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. Journal of the National Cancer Institute. 2005;97(3):188-94. [DOI:10.1093/jnci/dji021]
27. Nagao T, Kinoshita T, Hojo T, Tsuda H, Tamura K, Fujiwara Y. The differences in the histological types of breast cancer and the response to neoadjuvant chemotherapy: the relationship between the outcome and the clinicopathological characteristics. The Breast. 2012;21(3):289-95. [DOI:10.1016/j.breast.2011.12.011]
28. Hahn SY, Ko EY, Han BK, Shin JH, Ko ES. Role of diffusion-weighted imaging as an adjunct to contrast-enhanced breast MRI in evaluating residual breast cancer following neoadjuvant chemotherapy. European Journal of Radiology. 2014;83(2):283-8. [DOI:10.1016/j.ejrad.2013.10.023]
29. An YY, Kim SH, Kang BJ, Lee AW. Treatment response evaluation of breast cancer after neoadjuvant chemotherapy and usefulness of the imaging parameters of MRI and PET/CT. Journal of Korean medical science. 2015;30(6):808-15. [DOI:10.3346/jkms.2015.30.6.808]
30. Li X, Abramson RG, Arlinghaus LR, Kang H, Chakravarthy AB, Abramson VG, et al. Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer. Investigative radiology. 2015;50(4):195-204. [DOI:10.1097/RLI.0000000000000100]
31. Cheng Q, Huang J, Liang J, Ma M, Ye K, Shi C, et al. The diagnostic performance of DCE-MRI in evaluating the pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis. Frontiers in Oncology. 2020;10:93. [DOI:10.3389/fonc.2020.00093]
32. Prevos R, Smidt M, Tjan-Heijnen V, van Goethem M, Beets-Tan R, Wildberger J, et al. Pre-treatment differences and early response monitoring of neoadjuvant chemotherapy in breast cancer patients using magnetic resonance imaging: a systematic review. European radiology. 2012;22:2607-16. [DOI:10.1007/s00330-012-2653-5]
33. Li X, Arlinghaus LR, Ayers GD, Chakravarthy AB, Abramson RG, Abramson VG, et al. DCE‐MRI analysis methods for predicting the response of breast cancer to neoadjuvant chemotherapy: Pilot study findings. Magnetic resonance in medicine. 2014;71(4):1592-602. [DOI:10.1002/mrm.24782]
34. Atuegwu NC, Arlinghaus LR, Li X, Chakravarthy AB, Abramson VG, Sanders ME, et al. Parameterizing the logistic model of tumor growth by DW-MRI and DCE-MRI data to predict treatment response and changes in breast cancer cellularity during neoadjuvant chemotherapy. Translational oncology. 2013;6(3):256-64. [DOI:10.1593/tlo.13130]
35. Marinovich M, Sardanelli F, Ciatto S, Mamounas E, Brennan M, Macaskill P, et al. Early prediction of pathologic response to neoadjuvant therapy in breast cancer: systematic review of the accuracy of MRI. The Breast. 2012;21(5):669-77. [DOI:10.1016/j.breast.2012.07.006]
36. Huang L, Fan M, Li L, Zhang J, Shao G, Zheng B, editors. Association between dynamic features of breast DCE-MR imaging and clinical response of neoadjuvant chemotherapy: a preliminary analysis. Medical Imaging 2016: PACS and Imaging Informatics: Next Generation and Innovations; 2016: SPIE. [DOI:10.1117/12.2225142]
37. Craciunescu OI, Blackwell KL, Jones EL, MacFall JR, Yu D, Vujaskovic Z, et al. DCE-MRI parameters have potential to predict response of locally advanced breast cancer patients to neoadjuvant chemotherapy and hyperthermia: a pilot study. International Journal of Hyperthermia. 2009;25(6):405-15. [DOI:10.1080/02656730903022700]
38. Bian T, Wu Z, Lin Q, Wang H, Ge Y, Duan S, et al. Radiomic signatures derived from multiparametric MRI for the pretreatment prediction of response to neoadjuvant chemotherapy in breast cancer. The British Journal of Radiology. 2020;93:20200287. [DOI:10.1259/bjr.20200287]
39. Cavallo Marincola B, Telesca M, Zaccagna F, Riemer F, Anzidei M, Catalano C, et al. Can unenhanced MRI of the breast replace contrast-enhanced MRI in assessing response to neoadjuvant chemotherapy? Acta Radiologica. 2019;60(1):35-44. [DOI:10.1177/0284185118773512]
40. Tokuda Y, Yanagawa M, Fujita Y, Honma K, Tanei T, Shimoda M, et al. Prediction of pathological complete response after neoadjuvant chemotherapy in breast cancer: comparison of diagnostic performances of dedicated breast PET, whole-body PET, and dynamic contrast-enhanced MRI. Breast Cancer Research and Treatment. 2021;188(1):107-15. [DOI:10.1007/s10549-021-06179-7]
41. Moon HG, Han W, Lee J, Ko E, Kim EK, Yu JH, et al. Age and HER2 expression status affect MRI accuracy in predicting residual tumor extent after neo-adjuvant systemic treatment. Annals of oncology. 2009;20(4):636-41. [DOI:10.1093/annonc/mdn683]
42. Li W, Newitt DC, Gibbs J, Wilmes LJ, Jones EF, Arasu VA, et al. Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL. NPJ breast cancer. 2020;6(1):1-6. [DOI:10.1038/s41523-020-00203-7]
43. Zhou J, Lu J, Gao C, Zeng J, Zhou C, Lai X, et al. Predicting the response to neoadjuvant chemotherapy for breast cancer: wavelet transforming radiomics in MRI. BMC cancer. 2020;20(1):1-10. [DOI:10.1186/s12885-020-6523-2]
44. Gampenrieder SP, Peer A, Weismann C, Meissnitzer M, Rinnerthaler G, Webhofer J, et al. Radiologic complete response (rCR) in contrast-enhanced magnetic resonance imaging (CE-MRI) after neoadjuvant chemotherapy for early breast cancer predicts recurrence-free survival but not pathologic complete response (pCR). Breast Cancer Research. 2019;21(1):1-11. [DOI:10.1186/s13058-018-1091-y]
45. Pesapane F, Rotili A, Botta F, Raimondi S, Bianchini L, Corso F, et al. Radiomics of MRI for the prediction of the pathological response to neoadjuvant chemotherapy in breast cancer patients: a single referral centre analysis. Cancers. 2021;13(17):4271. [DOI:10.3390/cancers13174271]
46. Chen X, Chen X, Yang J, Li Y, Fan W, Yang Z. Combining dynamic contrast-enhanced magnetic resonance imaging and apparent diffusion coefficient maps for a radiomics nomogram to predict pathological complete response to neoadjuvant chemotherapy in breast cancer patients. Journal of Computer Assisted Tomography. 2020;44(2):275-83. [DOI:10.1097/RCT.0000000000000978]
47. Dongfeng H, Daqing M, Erhu J. Dynamic breast magnetic resonance imaging: pretreatment prediction of tumor response to neoadjuvant chemotherapy. Clinical Breast Cancer. 2012;12(2):94-101. [DOI:10.1016/j.clbc.2011.11.002]
48. Fan M, Chen H, You C, Liu L, Gu Y, Peng W, et al. Radiomics of tumor heterogeneity in longitudinal dynamic contrast-enhanced magnetic resonance imaging for predicting response to neoadjuvant chemotherapy in breast cancer. Frontiers in molecular biosciences. 2021;8:622219. [DOI:10.3389/fmolb.2021.622219]
49. Zhao R, Lu H, Li YB, Shao ZZ, Ma WJ, Liu PF. Nomogram for early prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using dynamic contrast-enhanced and diffusion-weighted MRI. Academic Radiology. 2022;29:S155-S63. [DOI:10.1016/j.acra.2021.01.023]
50. Tateishi U, Miyake M, Nagaoka T, Terauchi T, Kubota K, Kinoshita T, et al. Neoadjuvant chemotherapy in breast cancer: prediction of pathologic response with PET/CT and dynamic contrast-enhanced MR imaging-prospective assessment. Radiology. 2012;263(1):53-63. [DOI:10.1148/radiol.12111177]
51. De Los Santos J, Bernreuter W, Keene K, Krontiras H, Carpenter J, Bland K, et al. Accuracy of breast magnetic resonance imaging in predicting pathologic response in patients treated with neoadjuvant chemotherapy. Clinical breast cancer. 2011;11(5):312-9. [DOI:10.1016/j.clbc.2011.06.007]
52. Schott AF, Roubidoux MA, Helvie MA, Hayes DF, Kleer CG, Newman LA, et al. Clinical and radiologic assessments to predict breast cancer pathologic complete response to neoadjuvant chemotherapy. Breast cancer research and treatment. 2005;92(3):231-8. [DOI:10.1007/s10549-005-2510-1]
Abed Dakhil H, Arian A, Ahmadinejad N, Bustan R B, Sahib M, Anjomrooz M. The value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the prediction of neoadjuvant chemotherapy response in breast cancer: A Meta-Analysis. Int J Radiat Res 2024; 22 (3) :749-755 URL: http://ijrr.com/article-1-5661-en.html