[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 4 (10-2024) ::
Int J Radiat Res 2024, 22(4): 817-822 Back to browse issues page
Radiation dose estimation of human organs for 177Lu-anti-EGFR-PAMAM complex
S. Zolghadri , M. Rabiei , A. Karimian , S.M. Hosseini
Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran , szolghadri@aeoi.org.ir
Abstract:   (407 Views)
Background: Nowadays, radiolabeled monoclonal antibodies (mAbs) are satisfactorily used for the diagnosis and therapy of different types of cancers. In this study, the human absorbed dose of 177Lu-Cetuximab-PAMAM was estimated based on the biodistribution data in tumor-bearing mice. Materials and Methods: 177Lu-DTPA-CHX-Cetuximab-PAMAM was prepared after the conjugation of cetuximab to PAMAM nanoparticles and DTPA-CHX to mAb-PAMAM. The biodistribution of the labeled nano-system was studied in the tumor-bearing nude mice up to 72 h after injection. The absorbed dose of human organs was calculated according to the animals’ data utilizing the radiation absorbed dose assessment resource (RADAR) and the relative mass extrapolation methods. Results: The radiolabeled compound, prepared at the optimized conditions, had a radiochemical purity (RCP) of 99.6% ± 0.4% (P < 0.05).  Most of the activity was accumulated in the tumor site (10.14 ± 0.89; P < 0.05). The liver and the kidneys received the highest absorbed dose with 0.561 and 0.207 mSv/MBq, respectively, which is lesser than the other monoclonal antibodies labeled with 177Lu. Conclusion: Considering the special characteristics of 177Lu-DTPA-CHX-Cetuximab-PAMAM, this radiolabeled nano-system can be considered as a safe and effective radiolabeled compound for treatment of EGFR-expressing tumors.
Keywords: PAMAM, Radiation, Dose, Lutetium-177, anti-EGFR.
Full-Text [PDF 642 kb]   (102 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Lin M, Paolillo V, Le DB, et al. (2021) Monoclonal antibody based radiopharmaceuticals for imaging and therapy. Curr Probl Cancer, 45: 100796. [DOI:10.1016/j.currproblcancer.2021.100796] [PMID]
2. Abadi A, Alirezapour B, Kertész I, et al. (2021) Preparation, quality control, and biodistribution assessment of [111In] In-DOTA-PR81 in BALB/c mice bearing breast tumors. J Labelled Comp Radiopharm, 64(4):168-180. [DOI:10.1002/jlcr.3897] [PMID]
3. Baselga J, Mendelsohn J (1994) Receptor blockade with monoclonal antibodies as anti-cancer therapy. Pharmacol Ther, 64(1): 127-154. [DOI:10.1016/0163-7258(94)90036-1]
4. Milenic DE, Wong KJ, Baidoo KE, et al. (2008) Cetuximab: preclinical evaluation of a monoclonal antibody targeting EGFR for radioimmunodiagnostic and radioimmunotherapeutic applications. Cancer Biother Radiopharm, 23(5): 619-631. [DOI:10.1089/cbr.2008.0493] [PMID] []
5. Blick SK, Scott LJ (2007) Cetuximab: a review of its use in squamous cell carcinoma of the head and neck and metastatic colorectal cancer. Drugs, 67(17):2585-2607. [DOI:10.2165/00003495-200767170-00008] [PMID]
6. Galizia G, Lieto E, De Vita F, et al. (2007) Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer. Oncogene, 26(25): 3654-3660. [DOI:10.1038/sj.onc.1210381] [PMID]
7. Li R, Liang M, Liang X, et al. (2020) Chemotherapeutic Effectiveness of Combining Cetuximab for Metastatic Colorectal Cancer Treatment: A System Review and Meta-Analysis. Front Oncol, 10: 868. [DOI:10.3389/fonc.2020.00868] [PMID] []
8. Chidharla A, Parsi M, Kasi A (2023) Cetuximab. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459293/.
9. Sihver W, Pietzsch J, Krause M, et al. (2014) Radiolabeled Cetuximab Conjugates for EGFR Targeted Cancer Diagnostics and Therapy. Pharmaceuticals, 7(3): 311-338. [DOI:10.3390/ph7030311] [PMID] []
10. Eiblmaier M, Meyer LA, Watson MA, et al. (2008) Correlating EGFR expression with receptor-binding properties and internalization of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines. J Nucl Med, 49: 1472-1479. [DOI:10.2967/jnumed.108.052316] [PMID] []
11. Karmani L, Labar D, Valembois V, et al. (2013) Antibody-functionalized nanoparticles for imaging cancer: Influence of conjugation to gold nanoparticles on the biodistribution of 89Zr-labeled cetuximab in mice. Contrast Media Mol Imaging, 8: 402-408. [DOI:10.1002/cmmi.1539] [PMID]
12. Hoeben BA, Molkenboer-Kuenen JD, Oyen WJ, et al. (2011) Radiolabeled cetuximab: dose optimization for epidermal growth factor receptor imaging in a head-and-neck squamous cell carcinoma model. Int J Cancer, 129(4): 870-878. [DOI:10.1002/ijc.25727] [PMID]
13. Perk LR, Visser GW, Vosjan MJ, et al. (2005) 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med, 46: 1898-1906.
14. Yousefnia H, Jalilian AR, Zolghadri S, et al. (2010) Preparation and quality control of lutetium-177 bleomycin as a possible therapeutic agent. Nukleonika, 55(3): 285-291.
15. Yousefnia H, Zolghadri S, Alirezapour B (2022) Biological assessment and human absorbed dose estimation of [111In] In-DTPA-antiMUC1 as a radioimmunoconjugate for breast cancer imaging. Iran J Nucl Med, 30(1): 40-46.
16. Patra JK, Das G, Fraceto LF, et al. (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol, 16: 71-103. [DOI:10.1186/s12951-018-0392-8] [PMID] []
17. Hosseini SM, Mohammadnejad J, Yousefnia H, et al. (2023) Development of 177Lu-Cetuximab-PAMAM dendrimeric nanosystem: a novel theranostic radioimmunoconjugate. J Cancer Res Clin Oncol, 149(10): 7779-7791. [DOI:10.1007/s00432-023-04724-z] [PMID]
18. Shanehsazzadeh S, Yousefnia H, Lahooti A, et al. (2015) Assessment of human effective absorbed dose of 67 Ga-ECC based on biodistribution rat data. Ann Nucl Med, 29: 118-124. [DOI:10.1007/s12149-014-0917-7] [PMID]
19. ICRP (1992) Radiological Protection in Biomedical Research. ICRP Publication 62. Ann ICRP, 22 (3): 1-28. [DOI:10.1016/0146-6453(91)90019-D]
20. Shanehsazzadeh S, Yousefnia H, Jalilian AR, et al. (2015) Estimated human absorbed dose for (68)Ga-ECC based on mice data: comparison with (67)Ga-ECC. Ann Nucl Med, 29(6): 475-481. [DOI:10.1007/s12149-015-0967-5] [PMID]
21. Yousefnia H, Zolghadri S, Jalilian A (2015) Preliminary Dosimetry Study of 67Ga-AATS for Human Based on Biodistribution Data in Rats. Iran J Medical Phys, 12(2): 121-128.
22. Yousefnia H, Zolghadri S, Shanehsazzadeh S (2015) Estimated human absorbed dose of 177Lu-BPAMD based on mice data: Comparison with 177Lu-EDTMP. Appl Radiat Isot, 104: 128-135. [DOI:10.1016/j.apradiso.2015.06.033] [PMID]
23. Sparks R, Aydogan B (1999) Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. Oak Ridge Associated Universities, TN, United States.
24. Guidelines on the use of living animals in scientific investigations. Biological Council, UK, 2nd edn.
25. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: The Second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med, 46(6): 1023-1027.
26. Mohammadpour-Ghazi F, Yousefnia H, Divband G, et al. (2023) Development and evaluation of 89Zr-trastuzumab for clinical applications. Asia Ocean J Nucl Med Biol, 11(2): 135-144.
27. Yousefnia H, Radfar E, Jalilian AR, et al. (2011) Development of 177Lu-DOTA-anti-CD20 for radioimmunotherapy. J Radioanal Nucl Chem, 287: 199-209. [DOI:10.1007/s10967-010-0676-4]
28. Liu Z, Ma T, Liu H, et al. (2014) 177Lu-labeled antibodies for EGFR-targeted SPECT/CT imaging and radioimmunotherapy in a preclinical head and neck carcinoma model. Mol Pharm, 11(3): 800-807. [DOI:10.1021/mp4005047] [PMID]
29. Yavari K, Ghannadi M (2012) Lutetium 177-Labeled Cetuximab Evaluation for Radioimmunotherapeutic Applications. J Ardabil Univ Med Sci, 12(2): 204-212.
30. Amraee N, Alirezapour B, Hosntalab M, et al. (2023) 68Ga-labeled NODAGA-RGD-BBN heterodimer peptide as a novel radiotracer for dual integrin and GRPR-targeted tumor imaging. Int J Radiat Res, 21(3): 361-367. [DOI:10.61186/ijrr.21.3.361]
31. Hadisi M, Vosoughi N, Yousefnia H, et al. (2022) Compartmental modeling and absorbed dose assessment of 188Re-HYNIC-PSMA according to the rats' biodistribution data. Int J Radiat Res, 20(4): 823-827.
32. Habibi F, Faghihi R, Zolghadri S, et al. Estimation of human absorbed dose of 68Ga-Citrate based on biodistribution data in rats: Comparison with 67Ga-Citrate. Int J Radiat Res, 20(1): 151-156. [DOI:10.52547/ijrr.20.1.23]
33. Bahrami-Samani A, Yousefnia H, Abbasi Davani F, et al. (2016) Evaluation of Human Absorbed Dose of 177Lu-DOTA-Trastuzumab Based on its Biodistribution Studies in Rats. J Nucl Sci Technol (JonSat), 37(2): 8-15.
34. Vakili A, Jalilian AR, Moghadam AK, et al. (2012) Evaluation and comparison of human absorbed dose of (90) Y-DOTA-Cetuximab in various age groups based on distribution data in rats. J Med Phys, 37(4): 226-234. [DOI:10.4103/0971-6203.103609] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zolghadri S, Rabiei M, Karimian A, Hosseini S. Radiation dose estimation of human organs for 177Lu-anti-EGFR-PAMAM complex. Int J Radiat Res 2024; 22 (4) :817-822
URL: http://ijrr.com/article-1-5720-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 4 (10-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.21 seconds with 50 queries by YEKTAWEB 4660