1. Furetta C (1937) Handbook of thermoluminescence. World Scientific Publishing. 2. Nelson V, McLean D, Holloway L (2010) Thermoluminescent dosimetry (TLD) for megavoltage electron beam energy determination. Radiat Meas, 45: 698-700. [ DOI:10.1016/j.radmeas.2009.12.040] 3. Hauri P and Schneider U (2018) Whole-body dose and energy measurements in radiotherapy by a combination of LiF:Mg,Cu,P and LiF: Mg, Ti, Z. Med Phys, 28: 96-109. [ DOI:10.1016/j.zemedi.2017.07.002] [ PMID] 4. Nelsona VK and Hill RF (2011) Backscatter factor measurements for kilovoltage X-ray beams using thermoluminescent dosimeters (TLDs). Radiat Meas, 46: 2097-2099. [ DOI:10.1016/j.radmeas.2011.08.019] 5. Vega-Carrillo HR, Navarro Becerra JA, Pérez Arrieta ML, et al. (2014) Doses in sensitive organs during prostate treatment with a 60 Co unit. Appl Radiat Isot, 83: 227-229. [ DOI:10.1016/j.apradiso.2013.05.003] [ PMID] 6. Freirea L, Calado A, Cardodo JV, et al. (2008) Comparison of LiF (TLD-100 and TLD-100H) detectors for extremity monitoring. Radiat Meas, 43: 646-650. [ DOI:10.1016/j.radmeas.2007.12.013] 7. Nakajima T, Murayama Y, Matsuzaxa T, et al. (1978) Development of a new highly sensitive LiF thermoluminescence dosimeter and its applications. Nucl Instrum Methods Phys Res, 157(1): 155-162. [ DOI:10.1016/0029-554X(78)90601-8] 8. Gómez-Ros JM and Kitis G (2002) Computerised glow vurve deconvolution using general and mixed order kinetics. Radiat Prot Dosimetry, 101(1-4): 47-52. [ DOI:10.1093/oxfordjournals.rpd.a006029] [ PMID] 9. Sang ND, Hung NV, Hung TV, et al. (2017) Using the computerized glow curve deconvolution method and the R package TGCD to determination of thermoluminescence kinetic parameters of chilli powder samples by GOK model and OTOR one. Nucl Instrum Methods Phys Res B, 394: 113-120. [ DOI:10.1016/j.nimb.2017.01.012] 10. Sadek AM (2013) Test of the accuracy of the computerized glow curve deconvolution algorithm for the analysis of thermoluminescence glow curves. Nucl Instrum Methods Phys Res A, 712: 56-61. [ DOI:10.1016/j.nima.2013.02.011] 11. Wazir-ud-Din M, Ur-Rehman S, Mahmood MM, Ahmad K, et al. (2022) Computerized glow curve deconvolution (CGCD): A comparison using asymptotic vs rational approximation in thermoluminescence kinetic models. Appl Radiat Isot, 179: 110014. [ DOI:10.1016/j.apradiso.2021.110014] [ PMID] 12. Benkhelifa CZ, Boulanouar M, Şahiner E, et al. (2023) Determination of the kinetic parameters of BeO luminescent material using different methods towards X-ray irradiation. Radiat. Phys Chem, 212: 111139. [ DOI:10.1016/j.radphyschem.2023.111139] 13. Kitis G, Gomez-Ros JM, Tuyn JWN (1998) Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. J Phys D Appl Phys, 31: 2636-2641. [ DOI:10.1088/0022-3727/31/19/037] 14. Balian HG and Eddy NW (1977) Figure-Of-Merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nucl Inst Methods, 145: 389-395. [ DOI:10.1016/0029-554X(77)90437-2] 15. Afouxenidis D, Polymeris GS, Tsirliganis NC, et al. (2012) Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiat Protect Dosim, 149: 363-370. [ DOI:10.1093/rpd/ncr315] [ PMID] 16. Bøtter-Jensen L, McKeever SWS, Wintle AG (2003) Optically stimulated luminescence dosimetry. Elsevier Amsterdam. [ DOI:10.1016/B978-044450684-9/50091-X] 17. Mishra DR, Kulkarni MS, Rawat NS, et al. (2011) Preliminary non-linear light modulation OSL studies using α-Al2O3: C. Radiat Meas, 46: 1462-1468. [ DOI:10.1016/j.radmeas.2011.06.013] 18. Nyemann JE, Nielsan CL, Turtos RM, et al. (2023) New perspectives on traps and radiative recombination centers for optically stimulated luminescence in LiF: Mg, Cu, P. J Lumin, 255: 119586-119586. [ DOI:10.1016/j.jlumin.2022.119586] 19. Jose MT, Anishia SR, Annalakshmi O, et al. (2011) Determination of thermoluminescence kinetic parameters of thulium doped lithium calcium borate. Rad Meas, 46: 1026-1032. [ DOI:10.1016/j.radmeas.2011.08.001] 20. Du J, Lyu S, Jiang K, et al. (2022) Deep-level trap formation in Si-substituted Sr2SnO4: Sm3+ for rewritable optical information storage. Mater Today Chem, 24: 100906. [ DOI:10.1016/j.mtchem.2022.100906]
|