[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 23, Issue 1 (1-2025) ::
Int J Radiat Res 2025, 23(1): 83-90 Back to browse issues page
Physical aspects of skin dose distribution in tomotherapy of breast cancer
P. Saadatmand , S.R. Mahdavi , A. Nikoofar , G. Esmaili , M. Jalilifar , S. Khazaie , S. Vejdani
Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran , srmahdavi@hotmail.com
Abstract:   (344 Views)
Background: Estimating the accuracy of Treatment Planning Systems (TPS) in skin dose calculation is essential to achieving the intended therapeutic outcomes in breast cancer radiotherapy. This study aims to validate tomotherapy TPS accuracy in skin dose estimation. Materials and Methods: The ability of Accuray Precision TPS to provide precise skin dose calculations was examined by utilizing the Gafchromic EBT3 film, which was placed on the surface of the cylinder Delta4 phantom. The target volume received a 2Gy dose following setup validation. The accuracy of TPS was assessed using distinct spatial resolutions for dose calculation in helical and direct Tomotherapy plans. Using the RIT software, gamma analysis was employed to evaluate the precision of TPS skin dose distribution relative to the EBT3 film. Results: Comparison of skin dose distribution between the TPS and EBT3 films demonstrated acceptable gamma passing rates for helical (up to 98.51%) and direct plan (up to 90.41%) using gamma index criteria of 5 mm/5%. However, the gamma index of helical and direct tomotherapy plans with passing criteria of 3 mm/3% was 84.15% and 79.12%, respectively. Our findings indicate satisfactory consistency (3-5%) between measured and calculated skin doses using the EBT3 film and TPS, employing "high" spatial resolution dose calculation in helical and direct Tomotherapy plans. Conclusion: The reliability of the tomotherapy TPS in skin dose calculation is maintained by utilizing high spatial resolution for dose computation. The accuracy of TPS validated against the Gafchoromic EBT3 film was within an acceptable gamma-passing rate.
Keywords: Tomotherapy, intensity-modulated radiotherapy, skin dose, breast cancer.
Full-Text [PDF 1281 kb]   (65 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Crop F, Pasquier D, Baczkiewic A, et al. (2016) Surface imaging, laser positioning or volumetric imaging for breast cancer with nodal involvement treated by helical TomoTherapy. J Appl Clin Med Phys, 17(5): 200-11. [DOI:10.1120/jacmp.v17i5.6041]
2. Lauche O and Kirova YM (2014) Helical tomotherapy in breast cancer treatment. Breast Cancer Manag, 3(5): 441-9. [DOI:10.2217/bmt.14.34]
3. Parsai EI, Shvydka D, Pearson D, et al. (2008) Surface and build-up region dose analysis for clinical radiotherapy photon beams. Appl Radiat Isot, 66(10): 1438-42. [DOI:10.1016/j.apradiso.2008.02.089]
4. Akino Y, Das IJ, Bartlett GK, et al. (2013) Evaluation of superficial dosimetry between treatment planning system and measurement for several breast cancer treatment techniques. Med Phys, 40(1): 011714. [DOI:10.1118/1.4770285]
5. Panettieri V, Barsoum P, Westermark M, et al. (2009) AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE. Radiother Oncol, 93(1): 94-101. [DOI:10.1016/j.radonc.2009.05.010]
6. Chen M-F, Chen W-C, Lai C-H, et al. (2010) Predictive factors of radiation-induced skin toxicity in breast cancer patients. BMC Cancer, 10(1): 1-9. [DOI:10.1186/1471-2407-10-508]
7. Xie Y, Wang Q, Hu T, et al. (2021) Risk Factors Related to Acute Radiation Dermatitis in Breast Cancer Patients After Radiotherapy: A Systematic Review and Meta-Analysis. Front Oncol, 29(11): 738851. [DOI:10.3389/fonc.2021.738851]
8. Mori M, Cattaneo G, Dell'Oca I, et al. (2019) Skin DVHs predict cutaneous toxicity in Head and Neck Cancer patients treated with Tomotherapy. Phys Med, 59: 133-41. [DOI:10.1016/j.ejmp.2019.02.015]
9. Farhood B, Toossi MTB, Soleymanifard S, et al. (2017) Assessment of the accuracy of dose calculation in the build-up region of the tangential field of the breast for a radiotherapy treatment planning system. Contemp Oncol (Pozn), 21(3): 232-9. [DOI:10.5114/wo.2017.70114]
10. Capelle L, Warkentin H, MacKenzie M, et al. (2012) Skin-sparing Helical Tomotherapy vs 3D-conformal radiotherapy for adjuvant breast radiotherapy: in vivo skin dosimetry study. Int J Radiat Oncol Biol Phys, 83(5): e583-e90. [DOI:10.1016/j.ijrobp.2012.01.086]
11. Zibold F, Sterzing F, Sroka-Perez G, et al. (2009) Surface dose in the treatment of breast cancer with helical tomotherapy. Strahlenther Onkol, 185(9): 574-81. [DOI:10.1007/s00066-009-1979-7]
12. Ramsey CR, Seibert RM, Robison B, et al. (2007) Helical tomotherapy superficial dose measurements. Med Phys, 34(8): 3286-93. [DOI:10.1118/1.2757000]
13. Kim S-Y, You S-H, Song T-S, et al. (2009) Superficial Dosimetry for Helical Tomotherapy. Radiat Oncol J, 27(2): 103-10. [DOI:10.3857/jkstro.2009.27.2.103]
14. Kowalik A, Konstanty E, Piotrowski T, et al. (2019) Calculation and measurement of doses in the surface layers of a phantom when using tomotherapy. Rep Pract Oncol Radiother, 24(2): 251-62. [DOI:10.1016/j.rpor.2018.11.006]
15. Avanzo M, Drigo A, Kaiser SR, et al. (2013) Dose to the skin in helical tomotherapy: results of in vivo measurements with radiochromic films. Phys Med, 29(3): 304-11. [DOI:10.1016/j.ejmp.2012.04.004]
16. Kinhikar RA, Murthy V, Goel V, et al. (2009) Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy. Appl Radiat Isot, 67(9): 1683-5. [DOI:10.1016/j.apradiso.2009.03.008]
17. Snir JA, Mosalaei H, Jordan K, et al. (2011) Surface dose measurement for helical tomotherapy. Med Phys, 38(6Part1): 3104-7. [DOI:10.1118/1.3592021]
18. Hardcastle N, Soisson E, Metcalfe P, et al. (2008) Dosimetric verification of helical tomotherapy for total scalp irradiation. Med Phys, 35(11): 5061-8. [DOI:10.1118/1.2996288]
19. Goddu SM, Yaddanapudi S, Pechenaya OL, et al. (2009) Dosimetric consequences of uncorrected setup errors in helical Tomotherapy treatments of breast-cancer patients. Radiother Oncol, 93(1): 64-70. [DOI:10.1016/j.radonc.2009.07.013]
20. Cherpak A, Studinski RC, Cygler JE (2008) MOSFET detectors in quality assurance of tomotherapy treatments. Radiother Oncol, 86(2): 242-50. [DOI:10.1016/j.radonc.2007.10.025]
21. Zani M, Talamonti C, Bucciolini M, et al. (2016) In phantom assessment of superficial doses under TomoTherapy irradiation. Phys Med, 32(10): 1263-70. [DOI:10.1016/j.ejmp.2016.09.017]
22. Aydarous A (2014) Measurement and comparison of skin dose distribution in water phantom exposed to 6 MV photon beam. J Appl Sci, 14(17): 1952-8. [DOI:10.3923/jas.2014.1952.1958]
23. Reynolds TA and Higgins P (2015) Surface dose measurements with commonly used detectors: a consistent thickness correction method. J Appl Clin Med Phys, 16(5): 358-66. [DOI:10.1120/jacmp.v16i5.5572]
24. Toossi MTB, Mohamadian N, Mohammadi M, et al. (2020) Assessment of skin dose in breast cancer radiotherapy: on-phantom measurement and Monte Carlo simulation. Rep Pract Oncol Radiother, 25(3): 456-61. [DOI:10.1016/j.rpor.2020.03.008]
25. Srivastava RP and De Wagter C (2019) Clinical experience using Delta 4 phantom for pretreatment patient-specific quality assurance in modern radiotherapy. J Radiother Pract, 18(2): 210-4. [DOI:10.1017/S1460396918000572]
26. Li H, Dong L, Zhang L, et al. (2011) Toward a better understanding of the gamma index: Investigation of parameters with a surface‐based distance method a. Med Phys, 38(12): 6730-41. [DOI:10.1118/1.3659707]
27. Saadatmand P, Amouheidari A, Shanei A, et al. (2020) Dose perturbation due to dental amalgam in the head and neck radiotherapy: a phantom study. Med Dosim, 45(2): 128-33. [DOI:10.1016/j.meddos.2019.08.002]
28. Saadatmand P, Shanei A, Amouheidari A, et al. (2019) Evaluation of the effects of dental filling material artifacts on IMRT treatment planning in patient with nasopharyngeal cancer. Int J Radiat Res, 17(3): 477-83.
29. McDermott PN (2020) Surface dose and acute skin reactions in external beam breast radiotherapy. Med Dosim, 45(2): 153-8. [DOI:10.1016/j.meddos.2019.09.001]
30. Clarke R, Fry F, Stather J, et al. (1993) 1990 recommendations of the International Commission on Radiological Protection. Documents of the NRPB, 4(1): 1-5.
31. Tournel K, Verellen D, Duchateau M, et al. (2007) An assessment of the use of skin flashes in helical tomotherapy using phantom and in-vivo dosimetry. Radiother Oncol, 84(1): 34-9. [DOI:10.1016/j.radonc.2007.06.003]
32. Sterpin E, Salvat F, Olivera G, et al. (2009) Monte Carlo evaluation of the convolution/superposition algorithm of Hi‐Art™ tomotherapy in heterogeneous phantoms and clinical cases. Med Phys, 36(5): 1566-75. [DOI:10.1118/1.3112364]
33. Javedan K, Zhang G, Mueller R, et al. (2009) Skin dose study of chest wall treatment with tomotherapy. Jpn J Radiol, 27: 355-62. [DOI:10.1007/s11604-009-0357-9]
34. Higgins PD, Han E, Yuan J, et al. (2007) Evaluation of surface and superficial dose for head and neck treatments using conventional or intensity-modulated techniques. Phys Med Biol, 52(4): 1135. [DOI:10.1088/0031-9155/52/4/018]
35. Qi ZY, Deng XW, Huang SM, et al. (2009) In vivo verification of superficial dose for head and neck treatments using intensity‐modulated techniques. Med Phys, 36(1): 59-70. [DOI:10.1118/1.3030951]
36. Wang L, Cmelak AJ, Ding GX (2018) A simple technique to improve calculated skin dose accuracy in a commercial treatment planning system. J Appl Clin Med Phys, 19(2): 191-7. [DOI:10.1002/acm2.12275]
37. Hauri P, Verlaan S, Graydon S, et al. (2014) Clinical evaluation of an anatomy‐based patient specific quality assurance system. J Appl Clin Med Phys, 15(2): 181-90. [DOI:10.1120/jacmp.v15i2.4647]
38. Abedi Firouzjah R, Nickfarjam A, Bakhshandeh M, et al. (2019) The use of EBT3 film and Delta4 for the dosimetric verification of EclipseTM treatment planning system in a heterogeneous chest phantom: an IMRT technique. Int J Radiat Res, 17(2): 355-61.
39. Atiq M, Atiq A, Iqbal K, et al. (2017) Interpretation of gamma index for quality assurance of simultaneously integrated boost (SIB) IMRT plans for head and neck carcinoma. Polish J Med Phys Eng, 23(4): 93-7. [DOI:10.1515/pjmpe-2017-0016]
40. Grégoire V and Mackie T (2011) State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83). Cancer Radiother, 15(6-7): 555-9. [DOI:10.1016/j.canrad.2011.04.003]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saadatmand P, Mahdavi S, Nikoofar A, Esmaili G, Jalilifar M, Khazaie S et al . Physical aspects of skin dose distribution in tomotherapy of breast cancer. Int J Radiat Res 2025; 23 (1) :83-90
URL: http://ijrr.com/article-1-5952-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 1 (1-2025) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.09 seconds with 48 queries by YEKTAWEB 4704