1. Bray F, Laversanne M, Sung H, et al. (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 74(3): 229-263. [ DOI:10.3322/caac.21834] 2. Kratzer TB, Bandi P, Freedman ND, et al. (2024) Lung cancer statistics, 2023. Cancer, 130(8): 1330-1348. [ DOI:10.1002/cncr.35128] 3. Leiter A, Veluswamy RR, Wisnivesky JP (2023) The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol, 20(9): 624-639. [ DOI:10.1038/s41571-023-00798-3] 4. Lee E and Kazerooni EA (2022) Lung cancer screening. Semin Respir Crit Care Med, 43(6): 839-850. [ DOI:10.1055/s-0042-1757885] 5. Wu F, Wang L, Zhou C (2021) Lung cancer in China: current and prospect. Curr Opin Oncol, 33(1): 40-46. [ DOI:10.1097/CCO.0000000000000703] 6. Sugai Y, Kadoya N, Tanaka S, et al. (2021) Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients. Radiat Oncol, 16(1): 80. [ DOI:10.1186/s13014-021-01810-9] 7. Wang BY, Huang JY, Chen HC, et al. (2020) The comparison between adenocarcinoma and squamous cell carcinoma in lung cancer patients. J Cancer Res Clin Oncol, 146(1): 43-52. [ DOI:10.1007/s00432-019-03079-8] 8. Kalemaki MS, Karantanas AH, Exarchos D, et al. (2020) PET/CT and PET/MRI in ophthalmic oncology (Review). Int J Oncol, 56(2): 417-429. [ DOI:10.3892/ijo.2020.4955] 9. Zangeneh M, Nedaei HA, Mozdarani H, et al. (2019) Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies. Mater Sci Eng C Mater Biol Appl, 103: 109739. [ DOI:10.1016/j.msec.2019.109739] 10. Zhang X, Zhang G, Qiu X, et al. (2024) Exploring non-invasive precision treatment in non-small cell lung cancer patients through deep learning radiomics across imaging features and molecular phenotypes. Biomark Res, 12(1): 12. [ DOI:10.1186/s40364-024-00561-5] 11. Schillaci O, Scimeca M, Toschi N, et al. (2019) Combining Diagnostic Imaging and Pathology for Improving Diagnosis and Prognosis of Cancer. Contrast Media Mol Imaging. 2019: 9429761. [ DOI:10.1155/2019/9429761] 12. Otani T, Ikushima H, Bando Y, et al. (2023) Early prediction of radiotherapeutic efficacy in a mouse model of non-small cell lung carcinoma using 18F-FLT and 18F-FDG PET/CT. J Med Invest, 70(3.4): 361-368. [ DOI:10.2152/jmi.70.361] 13. Kagimoto A, Tsutani Y, Mimae T, et al. (2022) Segmentectomy versus lobectomy for solid predominant cN0 lung cancer: analysis using visual evaluation of positron emission tomography. Eur J Cardiothorac Surg, 61(2): 279-286. [ DOI:10.1093/ejcts/ezab434] 14. Cegla P, Bryl M, Witkowska K, et al. (2021) Differences between TNM classification and 2-[18F]FDG PET parameters of primary tumor in NSCLC patients. Rep Pract Oncol Radiother, 26(3): 445-450. [ DOI:10.5603/RPOR.a2021.0072] 15. Pirayesh E, Amoui M, Akhlaghpoor S, et al. (2014) Technical Considerations of Phosphorous-32 Bremsstrahlung SPECT Imaging after Radioembolization of Hepatic Tumors: A Clinical Assessment with a Review of Imaging Parameters. Radiol Res Pract, 2014: 407158. [ DOI:10.1155/2014/407158] 16. Lee J, Li B, Cui Y, et al. (2018) A quantitative CT imaging signature predicts survival and complements established prognosticators in stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys, 102(4): 1098-1106. [ DOI:10.1016/j.ijrobp.2018.01.006] 17. Han Y, Dong Z, Xing Y, et al. (2023) Establishment of a prognosis prediction model for lung squamous cell carcinoma related to PET/CT: basing on immunogenic cell death-related lncRNA. BMC Pulm Med, 23(1): 511. [ DOI:10.1186/s12890-023-02792-y] 18. Mozdarani H (2012) Biological complexities in radiation carcinogenesis and cancer radiotherapy: impact of new biological paradigms. Genes (Basel), 3(1): 90-114. [ DOI:10.3390/genes3010090] 19. Liang L, Zhang H, Lei H, et al. (2022) Diagnosis of benign and malignant pulmonary ground-glass nodules using computed tomography radiomics parameters. Technol Cancer Res Treat, 21: 15330338221119748. [ DOI:10.1177/15330338221119748] 20. Kadoya N, Tanaka S, Kajikawa T, et al. (2020) Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics. Med Phys, 47(5): 2197-2205. [ DOI:10.1002/mp.14104] 21. Wang R, Dai W, Gong J, et al. (2022) Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients. J Hematol Oncol, 15(1): 11. [ DOI:10.1186/s13045-022-01225-3] 22. Pfaehler E, Mesotten L, Zhovannik I, et al. (2021) Plausibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer. Med Phys, 48(3): 1226-1238. [ DOI:10.1002/mp.14684] 23. Boellaard R, Delgado-Bolton R, Oyen WJ, et al. (2015) FDG PET/CT: EANM procedure guidelines for tumor imaging: version 2.0. Eur J Nucl Med Mol Imaging, 42(2): 328-54. [ DOI:10.1007/s00259-014-2961-x] 24. Zhou R, Cai Z, Yuan Y, et al. (2024) Study on the application value of combined detection of multiple tumor markers in lung cancer classification diagnosis. Int J Radiat Res, 22 (2): 283-287. [ DOI:10.61186/ijrr.22.2.283] 25. Chetan MR and Gleeson FV (2021) Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives. Eur Radiol, 31(2): 1049-1058. [ DOI:10.1007/s00330-020-07141-9] 26. Deng J, Ren W, Shen J, et al. (2024) Maximum PET/CT 18F-FDG uptake of lymph nodes predict prognosis in esophageal squamous cell carcinoma. Int J Radiat Res, 22 (2): 265-270. [ DOI:10.61186/ijrr.22.2.265] 27. Pang Y, Zhao L, Meng T, et al. (2023) PET imaging of fibroblast activation protein in various types of cancer using 68Ga-FAP-2286: Comparison with 18F-FDG and 68Ga-FAPI-46 in a single-center, prospective study. J Nucl Med, 64(3): 386-394. [ DOI:10.2967/jnumed.122.264544] 28. Liao S, Penney BC, Wroblewski K, et al. (2012) Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging, 39(1): 27-38. [ DOI:10.1007/s00259-011-1934-6] 29. Chen X, Shen L, Hong Y (2023) 18F-fluorodeoxyglucose positron emission tomography/computed tomography for predicting prognosis of small cell lung cancer patients. Int J Radiat Res, 21(2): 211-215. 30. Hicks RJ. (2022) The Value of the standardized uptake value (SUV) and metabolic tumor volume (MTV) in lung cancer. Semin Nucl Med, 52(6): 734-744. [ DOI:10.1053/j.semnuclmed.2022.04.007] 31. Rogasch JMM, Furth C, Chibolela C, et al. (2020) Validation of independent prognostic value of asphericity of 18F-fluorodeoxyglucose uptake in non-small-cell lung cancer patients undergoing treatment with curative intent. Clin Lung Cancer, 21(3): 264-272.e6. [ DOI:10.1016/j.cllc.2019.10.001] 32. Pyka T, Bundschuh RA, Andratschke N, et al. (2015) Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early-stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat Oncol, 10: 100. [ DOI:10.1186/s13014-015-0407-7] 33. Mallorie A, Goldring J, Patel A, et al. (2017) Assessment of nodal involvement in non-small-cell lung cancer with 18F-FDG-PET/CT: mediastinal blood pool cut-off has the highest sensitivity and tumor SUVmax/2 has the highest specificity. Nucl Med Commun, 38(8): 715-719. [ DOI:10.1097/MNM.0000000000000703] 34. Casali C, Cucca M, Rossi G, et al. (2010) The variation of prognostic significance of Maximum Standardized Uptake Value of [18F]-fluoro-2-deoxy-glucose positron emission tomography in different histological subtypes and pathological stages of surgically resected Non-Small Cell Lung Carcinoma. Lung Cancer, 69(2): 187-93. [ DOI:10.1016/j.lungcan.2009.10.015] 35. Zengin T and Önal-Süzek T (2021) Comprehensive profiling of genomic and transcriptomic differences between risk groups of lung adenocarcinoma and lung squamous cell carcinoma. J Pers Med, 11(2): 154. [ DOI:10.3390/jpm11020154] 36. Li J, Ge S, Sang S, et al. (2021) Evaluation of PD-L1 expression level in patients with non-small cell lung cancer by 18F-FDG PET/CT radiomics and clinicopathological characteristics. Front Oncol, 11: 789014. [ DOI:10.3389/fonc.2021.789014]
|