Task-based fMRI study of activation in the brain network: A seed-based functional connectivity analysis
|
M. Chen , Y. Chen , X. Wang , X. Ye , Z. Huang , W. Wu  |
|
|
Abstract: (223 Views) |
Background: Task-based functional magnetic resonance imaging (fMRI) is an effective method for noninvasively studying brain activity. We aim to find representative brain areas of the swallowing movement and compare the functional connectivity differences in these areas. Materials and Methods: A total of 23 participants were recruited to undergo task-based fMRI scans. Subject-level statistical analysis and group-level activation analysis were conducted using SPM12. Seed-based Functional Connectivity (FC) analyses were conducted to construct FC in brain level. We used two-sample t-test to identify distinctive FC patterns in various seeds. The relationship between FC values and swallowing frequency was also explored. Results: In experiment I, group-level activation patterns were observed in 30-second saliva swallowing trial task, but not in 18s-on task. Two sample t-tests showed that the seed located in right pericentral area (Seed3) had significantly more intensive FC than that located in cingulum (Seed5) with left postcentral gyrus, the seed located in left pericentral area(Seed4) had significantly more intensive FC than those located in cerebellum(Seed1,2) or in Seed5 with right postcentral gyrus, Seed5 had significantly more intensive FC than Seed1,2,4 with right middle frontal gyrus, right superior frontal gyrus and left supplementary motor area separately. No significant positive or negative correlations between swallowing frequency and seed-based FC values were found. Conclusions: Saliva swallowing trail task with self-paced rhythm in sufficient time can activate swallowing-related brain regions effectively. The activation peaks in bilateral pericentral area are representative in swallowing process and could be new therapeutic targets for poststroke dysphagia instead of traditional route. |
|
Keywords: Functional magnetic resonance imaging (fMRI), Brain activation, seed-based functional connectivity, therapeutic targets. |
|
Full-Text [PDF 869 kb]
(57 Downloads)
|
Type of Study: Original Research |
Subject:
Radiation Biology
|
|
|
|
|
References |
1. Martino R, Foley N, Bhogal S, Diamant N, Speechley M, Teasell R (2005) Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke, 36(12): 2756-2763. [ DOI:10.1161/01.STR.0000190056.76543.eb] 2. Suntrup S, Kemmling A, Warnecke T, et al. (2015) The impact of lesion location on dysphagia incidence, pattern and complications in acute stroke. Part 1: dysphagia incidence, severity and aspiration. European Journal of Neurology, 22(5): 832-838. [ DOI:10.1111/ene.12670] 3. Yang W, Cao X, Zhang X, Wang X, Li X, Huai Y (2021) The effect of repetitive transcranial magnetic stimulation on dysphagia after stroke: A systematic review and meta-analysis. Frontiers in Neuroscience, 15: 769848. [ DOI:10.3389/fnins.2021.769848] 4. Lim KB, Lee HJ, Yoo J, Kwon YG (2014) Effect of low-frequency rTMS and NMES on subacute unilateral hemispheric stroke with dysphagia. Annals of Rehabilitation Medicine-Arm, 38(5): 592-602. [ DOI:10.5535/arm.2014.38.5.592] 5. Kim L, Chun MH, Kim BR, Lee SJ (2011) Effect of repetitive transcranial magnetic stimulation on patients with brain injury and dysphagia. Annals of Rehabilitation Medicine-Arm, 35(6): 765-771. [ DOI:10.5535/arm.2011.35.6.765] 6. Park E, Kim MS, Chang WH, et al. (2017) Effects of bilateral repetitive transcranial magnetic stimulation on post-stroke dysphagia. Brain Stimulation, 10(1): 75-82. [ DOI:10.1016/j.brs.2016.08.005] 7. Park JW, Oh JC, Lee JW, Yeo JS, Ryu KH (2013) The effect of 5Hz high-frequency rTMS over contralesional pharyngeal motor cortex in post-stroke oropharyngeal dysphagia: a randomized controlled study. Neurogastroenterology and Motility, 25(4): 250-324. [ DOI:10.1111/nmo.12063] 8. Unluer NO, Temucin CM, Demir N, Serel AS, Karaduman AA (2019) Effects of low-frequency repetitive transcranial magnetic stimulation on swallowing function and quality of life of post-stroke patients. Dysphagia, 34(3): 360-371. [ DOI:10.1007/s00455-018-09965-6] 9. Khedr EM, Abo-Elfetoh N, Rothwell JC (2009) Treatment of post-stroke dysphagia with repetitive transcranial magnetic stimulation. Acta Neurologica Scandinavica, 119(3): 155-161. [ DOI:10.1111/j.1600-0404.2008.01093.x] 10. Khedr EM and Abo-Elfetoh N (2010) Therapeutic role of rTMS on recovery of dysphagia in patients with lateral medullary syndrome and brainstem infarction. Journal of Neurology Neurosurgery and Psychiatry, 81(5): 495-499. [ DOI:10.1136/jnnp.2009.188482] 11. Rao J, Li F, Zhong L, et al. (2022) Bilateral cerebellar intermittent theta burst stimulation combined with swallowing speech therapy for dysphagia after stroke: A randomized, double-blind, sham-controlled, clinical trial. Neurorehabilitation and Neural Repair, 36(7): 437-448. [ DOI:10.1177/15459683221092995] 12. Sasegbon A, Smith CJ, Bath P, Rothwell J, Hamdy S (2020) The effects of unilateral and bilateral cerebellar rTMS on human pharyngeal motor cortical activity and swallowing behavior. Experimental Brain Research, 238(7-8): 1719-1733. [ DOI:10.1007/s00221-020-05787-x] 13. Vasant DH, Michou E, Mistry S, Rothwell JC and Hamdy S (2015) High-frequency focal repetitive cerebellar stimulation induces prolonged increases in human pharyngeal motor cortex excitability. Journal of Physiology-London, 593(22): 4963-4977. [ DOI:10.1113/JP270817] 14. Sasegbon A, Niziolek N, Zhang M, et al. (2021) The effects of midline cerebellar rTMS on human pharyngeal cortical activity in the intact swallowing motor system. Cerebellum, 20(1): 101-115. [ DOI:10.1007/s12311-020-01191-x] 15. Jayasekeran V, Rothwell J, Hamdy S (2011) Non-invasive magnetic stimulation of the human cerebellum facilitates cortico-bulbar projections in the swallowing motor system. Neurogastroenterology and Motility, 23(9): 341-831. [ DOI:10.1111/j.1365-2982.2011.01747.x] 16. Vasant DH, Sasegbon A, Michou E, Smith C, Hamdy S (2019) Rapid improvement in brain and swallowing behavior induced by cerebellar repetitive transcranial magnetic stimulation in poststroke dysphagia: A single patient case-controlled study. Neurogastroenterology and Motility, 31(7): e13609. [ DOI:10.1111/nmo.13609] 17. Ogawa S, Tank DW, Menon R, et al. (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceed Nat Acad Sci USA, 89(13): 5951-5955. [ DOI:10.1073/pnas.89.13.5951] 18. Soros P, Inamoto Y, Martin RE (2009) Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Human Brain Mapping, 30(8): 2426-2439. [ DOI:10.1002/hbm.20680] 19. Humbert IA, Fitzgerald ME, McLaren DG, et al. (2009) Neurophysiology of swallowing: effects of age and bolus type. Neuroimage, 44(3): 982-991. [ DOI:10.1016/j.neuroimage.2008.10.012] 20. Kawai T, Watanabe Y, Tonogi M, et al. (2009) Visual and auditory stimuli associated with swallowing: an FMRI study. Bulletin of Tokyo Dental College, 50(4): 169-181. [ DOI:10.2209/tdcpublication.50.169] 21. Babaei A, Kern M, Antonik S, et al. (2010) Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 299(2): G422-G429. [ DOI:10.1152/ajpgi.00161.2010] 22. Humbert IA, McLaren DG, Kosmatka K, et al. (2010) Early deficits in cortical control of swallowing in Alzheimer's disease. Journal of Alzheimers Disease, 19(4): 1185-1197. [ DOI:10.3233/JAD-2010-1316] 23. Malandraki GA, Perlman AL, Karampinos DC, Sutton BP (2011) Reduced somatosensory activations in swallowing with age. Human Brain Mapping, 32(5): 730-743. [ DOI:10.1002/hbm.21062] 24. Martin RE, MacIntosh BJ, Smith RC, et al. (2004) Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. Journal of Neurophysiology, 92(4): 2428-2443. [ DOI:10.1152/jn.01144.2003] 25. Mosier K, Liu WC, Behin B, Lee C, Baredes S (2005) Cortical adaptation following partial glossectomy with primary closure: implications for reconstruction of the oral tongue. Ann Oto Rhino Laryngo, 114(9): 681-687. [ DOI:10.1177/000348940511400905] 26. Martin R, Barr A, MacIntosh B, et al. (2007) Cerebral cortical processing of swallowing in older adults. Experimental Brain Research, 176(1): 12-22. [ DOI:10.1007/s00221-006-0592-6] 27. Li S, Chen Q, Yu B, et al. (2009) Structural and functional changes mapped in the brains of amyotrophic lateral sclerosis patients with/without dysphagia: a pilot study. Amyotroph Lateral Scler, 10(5-6): 280-287. [ DOI:10.3109/17482960902893342] 28. Li S, Luo C, Yu B, et al. (2009) Functional magnetic resonance imaging study on dysphagia after unilateral hemispheric stroke: a preliminary study. Journal of Neurology Neurosurgery and Psychiatry, 80(12): 1320-1329. [ DOI:10.1136/jnnp.2009.176214] 29. Malandraki GA, Sutton BP, Perlman AL, Karampinos DC, Conway C (2009) Neural activation of swallowing and swallowing-related tasks in healthy young adults: an attempt to separate the components of deglutition. Human Brain Mapping, 30(10): 3209-3226. [ DOI:10.1002/hbm.20743] 30. Malandraki GA, Sutton BP, Perlman AL, Karampinos DC (2010) Age-related differences in laterality of cortical activations in swallowing. Dysphagia, 25(3): 238-249. [ DOI:10.1007/s00455-009-9250-z] 31. Haupage S, Peck KK, Branski RC, Hsu M, Holodny A, Kraus D (2010) Functional MRI of tongue motor tasks in patients with tongue cancer: observations before and after partial glossectomy. Neuroradiology, 52(12): 1185-1191. [ DOI:10.1007/s00234-010-0748-8] 32. Michou E, Mistry S, Jefferson S, Singh S, Rothwell J, Hamdy S (2012) Targeting unlesioned pharyngeal motor cortex improves swallowing in healthy individuals and after dysphagic stroke. Gastroenterology, 142(1): 29-38. [ DOI:10.1053/j.gastro.2011.09.040] 33. Birn RM, Bandettini PA, Cox RW, Shaker R (1999) Event-related fMRI of tasks involving brief motion. Human Brain Mapping, 7(2): 106-114.
https://doi.org/10.1002/(SICI)1097-0193(1999)7:2<106::AID-HBM4>3.0.CO;2-O [ DOI:10.1002/(SICI)1097-0193(1999)7:23.0.CO;2-O] 34. Martin RE, Goodyear BG, Gati JS, Menon RS (2001) Cerebral cortical representation of automatic and volitional swallowing in humans. Journal of Neurophysiology, 85(2): 938-950. [ DOI:10.1152/jn.2001.85.2.938] 35. Mosier K and Bereznaya I (2001) Parallel cortical networks for volitional control of swallowing in humans. Experimental Brain Research, 140(3): 280-289. [ DOI:10.1007/s002210100813] 36. Komisaruk BR, Mosier KM, Liu WC, et al. (2002) Functional localization of brainstem and cervical spinal cord nuclei in humans with fMRI. American Journal of Neuroradiology, 23(4): 609-617. 37. Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H (2003) Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia, 18(2): 71-77. [ DOI:10.1007/s00455-002-0088-x] 38. Toogood JA, Barr AM, Stevens TK, Gati JS, Menon RS, Martin RE (2005) Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) "Go, No-Go" study. Experimental Brain Research, 161(1): 81-90. [ DOI:10.1007/s00221-004-2048-1] 39. Kern MK, Jaradeh S, Arndorfer RC, Shaker R (2001) Cerebral cortical representation of reflexive and volitional swallowing in humans. American Journal of Physiology-Gastrointestinal and Liver Physiology, 280(3): G354-G360. [ DOI:10.1152/ajpgi.2001.280.3.G354] 40. Jing YH, Lin T, Li WQ, et al. (2020) Comparison of activation patterns in mirror neurons and the swallowing network during action observation and execution: a task-based fMRI study. Frontiers in Neuroscience, 14: 867. [ DOI:10.3389/fnins.2020.00867] 41. Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in Systems Neuroscience, 4:8. [ DOI:10.3389/fnsys.2010.00008] 42. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Human Brain Mapping, 15(4): 247-262. [ DOI:10.1002/hbm.10022] 43. Yan CG, Wang XD, Zuo XN, Zang YF (2016) DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics, 14(3): 339-351. [ DOI:10.1007/s12021-016-9299-4] 44. Calhoun VD, Wager TD, Krishnan A, et al. (2017) The impact of T1 versus EPI spatial normalization templates for fMRI data analyses. Human Brain Mapping, 38(11): 5331-5342. [ DOI:10.1002/hbm.23737] 45. Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. Plos One, 8(7): e68910. [ DOI:10.1371/journal.pone.0068910] 46. Mihai PG, Otto M, Platz T, Eickhoff SB, Lotze M (2014) Sequential evolution of cortical activity and effective connectivity of swallowing using fMRI. Human Brain Mapping, 35(12): 5962-5973. [ DOI:10.1002/hbm.22597] 47. Michou E and Hamdy S (2009) Cortical input in control of swallowing. Current Opinion in Otolaryngology & Head and Neck Surgery, 17(3): 166-171. [ DOI:10.1097/MOO.0b013e32832b255e] 48. Balasubramanium RK, Dodderi T, Bhat JS (2017) Does Cerebral Hemispheric Laterality Control Swallow Performance? Neurology Research International, 2017: 8762610. [ DOI:10.1155/2017/8762610] 49. Lowell SY, Reynolds RC, Chen G, Horwitz B, Ludlow CL (2012) Functional connectivity and laterality of the motor and sensory components in the volitional swallowing network. Experimental Brain Research, 219(1): 85-96. [ DOI:10.1007/s00221-012-3069-9] 50. Mihai PG, von Bohlen UHO, Lotze M (2013) Differentiation of cerebral representation of occlusion and swallowing with fMRI. American Journal of Physiology-Gastrointestinal and Liver Physiology, 304(10): G847-G854. [ DOI:10.1152/ajpgi.00456.2012] 51. Lima MS, Mangilli LD, Sassi FC, Andrade CR (2015) Functional magnetic resonance and swallowing: critical literature review. Brazilian Journal of Otorhinolaryngology, 81(6): 671-680. [ DOI:10.1016/j.bjorl.2015.08.006] 52. Humbert IA and Robbins J (2007) Normal swallowing and functional magnetic resonance imaging: a systematic review. Dysphagia, 22(3): 266-275. [ DOI:10.1007/s00455-007-9080-9]
|
|
Add your comments about this article |
|
|
|
Chen M, Chen Y, Wang X, Ye X, Huang Z, Wu W. Task-based fMRI study of activation in the brain network: A seed-based functional connectivity analysis. Int J Radiat Res 2025; 23 (2) :371-378 URL: http://ijrr.com/article-1-6396-en.html
|