[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 23, Issue 2 (5-2025) ::
Int J Radiat Res 2025, 23(2): 379-385 Back to browse issues page
Optimization of computed tomography protocols based on objective and subjective evaluations.
R.A.C. Guassu , .A. Santana Souza , M. Alvarez , S.M. Ribeiro , J.C.S. Trindade Filho , D.R. Pina
São Paulo State University Julio de Mesquita Filho, Medical School, Av. Prof. Mário Rubens Guimarães Montenegro - UNESP, Botucatu, Brazil , diana.pina@unesp.br
Abstract:   (188 Views)
Background: Computed tomography (CT) is a crucial technique in clinical practice for diagnosing thoracic pathologies. However, the risk associated with ionizing radiation requires measures to reduce patient exposure. Materials and Methods: This study aims to optimize thoracic CT protocols on a multislice CT scanner, using both objective and subjective analyses of image quality to decrease radiation dose without compromising diagnostic accuracy. A 16-channel CT scanner with automatic tube current modulation (ATCM) was utilized, along with an analytical phantom for objective evaluation. Six protocols with different standard deviation values were selected, including three used in clinical routines and three additional ones for testing. Parameters such as spatial resolution, low contrast resolution, noise, and dosimetry were assessed. Subjective Image Quality evaluation was conducted through visual grading analysis (VGA). Results: Optimized protocols were selected based on acceptable image quality and dose results. Data were statistically analyzed, demonstrating that optimized protocols showed a significant reduction in radiation dose while maintaining adequate diagnostic quality. Conclusion: This study contributes to clinical practice by adhering to the ALARA (As Low As Reasonably Achievable) principles of dose reduction, ensuring accurate and safe diagnoses in thoracic CT examinations.
Keywords: Computed tomography, dose optimization, image quality, thoracic imaging.
Full-Text [PDF 671 kb]   (46 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Saeed MK, Tammam N, Sulieman A (2021) Assessment of dose reduction and influence of gantry rotation time in CT abdomen examinations. Int J Radiat Res, 19(1): 223-230. doi: 10.29252/ijrr.19.1.223. [DOI:10.29252/ijrr.19.1.223]
2. Bastos Maués NHP, Alves AFF, Pavan ALM, Ribeiro SM, Yamashita S, Trindade AP, et al. (2019) ABdomen-pelvis computed tomography protocol optimization: an image quality and dose assessment. Radiat Prot Dosimetry, 184(1): 66-72. doi: 10.1093/rpd/ncy181. [DOI:10.1093/rpd/ncy181]
3. Brenner DJ (2014) What we know and what we don't know about cancer risks associated with radiation doses from radiological imaging. Br J Radiol, 87(1035): 20130629. doi: 10.1259/bjr.20130629. [DOI:10.1259/bjr.20130629]
4. Linton OW and Mettler FA (2003) National Council on Radiation Protection and Measurements; National conference on dose reduction in CT, with an emphasis on pediatric patients. Am J Roentgenol, 181(2): 321-329. doi: 10.2214/ajr.181.2.1810321. [DOI:10.2214/ajr.181.2.1810321]
5. de González AB and Darby S (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet Lond. Engl, 363(9406): 345-351. doi: 10.1016/S0140-6736(04)15433-0. [DOI:10.1016/S0140-6736(04)15433-0]
6. Lee D, Choi S, Lee H, Kim D, Choi S, Kim H-J (2017) Quantitative evaluation of anatomical noise in chest digital tomosynthesis, digital radiography, and computed tomography. J Instrum, 12(04): T04006. doi: 10.1088/1748-0221/12/04/T04006. [DOI:10.1088/1748-0221/12/04/T04006]
7. Report No. 184 - Medical Radiation Exposure of Patients in the United States (2019) - NCRP | Bethesda, MD'. Accessed: Apr. 08, 2024. [Online]. Available: https://ncrponline.org/shop/reports/report-no-184-medical-radiation-exposure-of-patients-in-the-united-states-2019/
8. Lee S, Yoon SW, Yoo SM, Ji YG, Kim KA, Kim SH, et al. (2011) Comparison of image quality and radiation dose between combined automatic tube current modulation and fixed tube current technique in CT of abdomen and pelvis. Acta Radiol Stockh Swed 1987, 52(10): 1101-1106. doi: 10.1258/ar.2011.100295. [DOI:10.1258/ar.2011.100295]
9. Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL, Morgan HT, et al. (2004) Techniques and applications of automatic tube current modulation for CT. Radiology, 233(3): 649-657. doi: 10.1148/radiol.2333031150. [DOI:10.1148/radiol.2333031150]
10. Prasad KN, Cole WC, Haase GM (2004) Radiation protection in humans: extending the concept of as low as reasonably achievable (ALARA) from dose to biological damage. Br J Radiol, 77(914): 97-99. doi: 10.1259/bjr/88081058. [DOI:10.1259/bjr/88081058]
11. Sookpeng S, Martin CJ, Gentle DJ (2016) Influence of CT automatic tube current modulation on uncertainty in effective dose. Radiat Prot Dosimetry, 168(1): 46-54. doi: 10.1093/rpd/ncu374. [DOI:10.1093/rpd/ncu374]
12. Soares FAP, Pereira AG, de Flôr RC (2011) Utilização de vestimentas de proteção radiológica para redução de dose absorvida: uma revisão integrativa da literatura. Radiol Bras, 2011 Mar/Abr; (44): 97-103. [DOI:10.1590/S0100-39842011000200009]
13. Nambu A, Sawada E, Kato S, Araki T, Aikawa Y, Yuge M, et al. (2011) Determination of a standard deviation that could minimize radiation exposure in an automatic exposure control for pulmonary thin-section computed tomography. Jpn J Radiol, 29(6): 405-412. doi: 10.1007/s11604-011-0571-0. [DOI:10.1007/s11604-011-0571-0]
14. Diwakar M and Kumar M (2018) A review on CT image noise and its denoising. Biomed. Signal Process Control, 42: 73-88. doi: 10.1016/j.bspc.2018.01.010. [DOI:10.1016/j.bspc.2018.01.010]
15. Park HJ, Jung SE, Lee YJ, Cho WI, Do KH, Kim SH, et al. (2009) The relationship between subjective and objective parameters in CT phantom image evaluation. Korean J Radiol, 10(5): 490-495. doi: 10.3348/kjr.2009.10.5.490. [DOI:10.3348/kjr.2009.10.5.490]
16. Miller DL, Balter S, Schueler BA, Wagner LK, Strauss KJ, Vañó E (2010) Clinical radiation management for fluoroscopically guided interventional procedures. Radiology, 257(2): 321-332. doi: 10.1148/radiol.10091269. [DOI:10.1148/radiol.10091269]
17. Doktor K, Vilholm ML, Hardardóttir A, Christensen HW, Lauritsen J (2019) European guidelines on quality criteria for diagnostic radiographic images of the lumbar spine - an intra- and inter-observer reproducibility study. Chiropr Man Ther, 27:20. doi: 10.1186/s12998-019-0241-3. [DOI:10.1186/s12998-019-0241-3]
18. Droege RT and Morin RL (1982) A practical method to measure the MTF of CT scanners. Med Phys, 9(5): 758-760. doi: 10.1118/1.595124. [DOI:10.1118/1.595124]
19. Liu RR, Prado K, Gillin M (2009) Simplified "on‐couch" daily quality assurance procedure for CT simulators. J Appl Clin Med Phys, 10(3): 49-55. doi: 10.1120/jacmp.v10i3.2844. [DOI:10.1120/jacmp.v10i3.2844]
20. Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient, in Noise Reduction in Speech Processing, Cohen I, Huang Y, Chen J, Benesty J (Eds.), Berlin, Heidelberg: Springer. pp: 1-4. doi: 10.1007/978-3-642-00296-0-5. [DOI:10.1007/978-3-642-00296-0_5]
21. Anam C, Haryanto F, Widita R, Arif I, Dougherty G, McLean D (2018) Volume computed tomography dose index (CTDIvol) and size-specific dose estimate (SSDE) for tube current modulation (TCM) in CT scanning, Int J Radiat Res, 16(3): 289-297.
22. Seeram E (2018) Computed tomography: A technical review. Radiol Technol, 89(3): 279CT-302CT.
23. Brady SL and Kaufman RA (2012) Investigation of American Association of Physicists in Medicine Report 204 size-specific dose estimates for pediatric CT implementation. Radiology, 265(3): 832-840. doi: 10.1148/radiol.12120131. [DOI:10.1148/radiol.12120131]
24. Brink JA and Morin RL (2012) Size-specific dose estimation for CT: how should it be used and what does it mean? Radiology, 265(3): 666-668. doi: 10.1148/radiol.12121919. [DOI:10.1148/radiol.12121919]
25. Dieckmeyer M, et al. (2023) Computed tomography of the head : A systematic review on acquisition and reconstruction techniques to reduce radiation dose. Clin. Neuroradiol, 33(3): 591-610. doi: 10.1007/s00062-023-01271-5. [DOI:10.1007/s00062-023-01271-5]
26. Söderberg M and Gunnarsson M (2010) Automatic exposure control in computed tomography--an evaluation of systems from different manufacturers. Acta Radiol Stockh Swed 1987, 51(6): 625-634. doi: 10.3109/02841851003698206. [DOI:10.3109/02841851003698206]
27. De Crop A, Bacher K, Van Hoof T, Smeets PV, Smet BS, Vergauwen M, et al. (2012) Correlation of contrast-detail analysis and clinical image quality assessment in chest radiography with a human cadaver study. Radiology, 262(1): 298-304. doi: 10.1148/radiol.11110447. [DOI:10.1148/radiol.11110447]
28. Ahmadifard M, Bakhshandeh M, Mohammadbeigi A, Khoshgard K (2022) Radiation dose of head and abdomen-pelvis computed tomography examinations using size-specific dose estimate. Int J Radiat Res, 20(1): 185-189. doi: 10.52547/ijrr.20.1.28. [DOI:10.52547/ijrr.20.1.28]
29. Brisse HJ, Brenot J, Pierrat N, Gaboriaud G, Savignoni A, De Rycke Y, et al. (2009) The relevance of image quality indices for dose optimization in abdominal multi-detector row CT in children: experimental assessment with pediatric phantoms. Phys Med Biol, 54(7): 1871-1892. doi: 10.1088/0031-9155/54/7/002. [DOI:10.1088/0031-9155/54/7/002]
30. Kubo T, Lin PJP, Stiller W, Takahashi M, Kauczor HU, Ohno Y, et al. (2008) Radiation dose reduction in chest CT: a review. Am J Roent, 190(2): 335-343. doi: 10.2214/AJR.07.2556. [DOI:10.2214/AJR.07.2556]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Guassu R, Santana Souza ., Alvarez M, Ribeiro S, Trindade Filho J, Pina D. Optimization of computed tomography protocols based on objective and subjective evaluations.. Int J Radiat Res 2025; 23 (2) :379-385
URL: http://ijrr.com/article-1-6397-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 2 (5-2025) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4714