Department of Health Physics, Graduate School of Health Sciences, İstanbul Medipol University, İstanbul, Türkiye , mervecinoglu@gmail.com
Abstract: (226 Views)
Background:The positron emission tomography (PET) technology has undergone continuous innovation in recent years. New-technology digital PETs are silicon photomultiplier (SiPM) PET systems with digital readouts, which contribute to improved image resolution. This study aimed to compare the image quality of sub-centimeter lesions of NEMA PET phantom images obtained under identical imaging conditions (identical lesion volumes, identical activity and identical scanning time) using dPET, analog PET-1 and analog PET-2 acquired in the clinic. Materials and Methods: For image analysis, a standard NEMA IEC body phantom was used. In the present study, the lesion detection performance of all PETs was evaluated in two categories, sub- and over-centimeter size. The imaging durations of this study were 1, 2, 3, and 5 minutes, while the injection doses were 2.33 and 5.33 kBq/ml for the 1/4 and 1/8 background-to-lesion ratios, respectively. For a quantitative assessment of image quality, a circular ROI with activity concentrations (ACmean) and the mean recovery coefficient were calculated for each lesion via the ACmean. Results: Our study revealed approximately 15% greater RCmean values for dPET with SiPM technology compared to the analog PET-2 with PMT technology. However, analog PET-1 exhibited a significant lack of performance, especially when compared to analog PET-2 and dPET. Conclusion: Although dPET, the first generation of dPETs analyzed in the present study, yields relatively better RCmean values than analog PETs, it is not able to entirely eliminate the unfavorable impacts of PVE for sub-centimeter lesions.
1. 1. Jiang W, Chalich Y, Deen MJ (2019) Sensors for positron emission tomography applications. Sensors, 19(22): 1-53. [DOI:10.3390/s19225019]
2. Roncali E and Cherry SR (2011) Application of silicon photomultipliers to positron emission tomography. Ann Biomed Eng, 39(4): 1358-77. [DOI:10.1007/s10439-011-0266-9]
3. Sun F, Duan N, Lo G-Q (2013) Highly efficient silicon photomultiplier for positron emission tomography application. Int. Jou. of Biomed. and Bio. Eng. 7(9): 555-557.
4. del Sordo S, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P (2009) Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors, 9: 3491-526. [DOI:10.3390/s90503491]
5. Komarov S, Yin Y, Wu H, Wen J, Krawczynski H, Meng LJ, et al. (2012) Investigation of the limitations of the highly pixilated CdZnTe detector for PET applications. Phys Med Biol, 57(22): 7355-80. [DOI:10.1088/0031-9155/57/22/7355]
6. Ariño-Estrada G, Mitchell GS, Kwon S Il, Du J, Kim H, Cirignano LJ, et al. (2018) Towards time-of-flight PET with a semiconductor detector. Phys Med Biol, 63(4): 1-9. [DOI:10.1088/1361-6560/aaaa4e]
7. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. Journal of Nuclear Medicine, 48: 932-45. [DOI:10.2967/jnumed.106.035774]
8. Hudson HM and Larkin RS (1994) Accelerated Image reconstruction using ordered subsets of projection data. IEEE Transactions on Medical Imaging, 13: 601-609. [DOI:10.1109/42.363108]
9. Daube-Witherspoon ME, Surti S, Perkins AE, Karp JS (2014) Determination of accuracy and precision of lesion uptake measurements in human subjects with time-of-flight pet. Journal of Nuclear Medicine, 55(4): 602-7. [DOI:10.2967/jnumed.113.127035]
10. Bellevre D, Blanc Fournier C, Switsers O, Dugué AE, Levy C, Allouache D, et al. (2014) Staging the axilla in breast cancer patients with 18F-FDG PET: How small are the metastases that we can detect with new generation clinical PET systems? Eur J Nucl Med Mol Imaging, 41(6): 1103-12. [DOI:10.1007/s00259-014-2689-7]
11. Ahn S, Ross SG, Asma E, Miao J, Jin X, Cheng L, et al. (2015) Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET. Phys Med Biol, 60(15): 5733-51. [DOI:10.1088/0031-9155/60/15/5733]
12. Ross S. Q.Clear: A Bayesian penalized likelihood reconstruction algorithm for PET image quantitation. GE Healthcare; 2014. DOC1474189 Rev 3: 1-9.
13. Assing MA, Patel BK, Karamsadkar N, Weinfurtner J, Usmani O, Kiluk JV, et al. (2017) A comparison of the diagnostic accuracy of magnetic resonance imaging to axillary ultrasound in the detection of axillary nodal metastases in newly diagnosed breast cancer. Breast Journal, 23(6): 647-55. [DOI:10.1111/tbj.12812]
14. Aktaş A, Gürleyik MG, Aksu SA, Aker F, Güngör S (2022) Diagnostic value of axillary ultrasound, MRI, and 18F-FDG-PET/CT in determining axillary lymph node status in breast cancer patients. Eur J Breast Health, 18(1): 37-47. [DOI:10.4274/ejbh.galenos.2021.2021-3-10]
15. Morawitz J, Bruckmann NM, Dietzel F, Ullrich T, Bittner AK, Hoffmann O, et al. (2022) Comparison of nodal staging between CT, MRI, and [18F]-FDG PET/MRI in patients with newly diagnosed breast cancer. Eur J Nucl Med Mol Imaging, 49(3): 992-1001. [DOI:10.1007/s00259-021-05502-0]
16. Xu C, Garutti E, Mandai S, Charbon E (2013) Comparison of digital and analog silicon photomultiplier for positron emission tomography application. EJNMMI Phys, 9(1):3: 1-7. [DOI:10.1109/NSSMIC.2013.6829585]
17. Recker MC, Cazalas EJ, McClory JW, Bevins JE (2019) Comparison of SiPM and PMT performance using a Cs2LiYCl6:Ce3+ (CLYC) scintillator with two optical windows. IEEE Trans Nucl Sci, 66(8): 1959-65. [DOI:10.1109/TNS.2019.2926246]
18. Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, et al. (2017) Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Physica Medica, 42: 203-10. [DOI:10.1016/j.ejmp.2017.09.124]
19. Tsutsui Y, Awamoto S, Himuro K, Kato T, Baba S, Sasaki M (2020) Evaluating and comparing the image quality and quantification accuracy of SiPM-PET/CT and PMT-PET/CT. Ann Nucl Med, 34(10): 725-35. [DOI:10.1007/s12149-020-01496-1]
20. Adler S, Seidel J, Choyke P, Knopp M V., Binzel K, Zhang J, et al. (2017) Minimum lesion detectability as a measure of PET system performance. EJNMMI Phys, 4(1): 1-14. [DOI:10.1186/s40658-017-0179-2]
21. Karlberg AM, Sæther O, Eikenes L, Goa PE (2016) Quantitative comparison of PET performance-siemens biograph mCT and mMR. EJNMMI Phys, 3(1): 1-14. [DOI:10.1186/s40658-016-0142-7]
22. Hsu DFC, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS (2017) Studies of a next-generation silicon-photomultiplier-based time-of-flight PET/CT system. Journal of Nuclear Medicine, 58(9): 1511-8. [DOI:10.2967/jnumed.117.189514]
23. NEMA NU 2-2012 (2013) Performance measurements of positron emission tomographs [Internet]. Available from: www.medicalimaging.org/
24. NEMA Standards Publication NU 2-2018 (2018) Performance Measurements of Positron Emission Tomographs (PETS) [Internet]. Available from: www.nema.org
25. Miwa K, Wagatsuma K, Nemoto R, Masubuchi M, Kamitaka Y, Yamao T, et al. (2020) Detection of sub-centimeter lesions using digital TOF-PET/CT system combined with Bayesian penalized likelihood reconstruction algorithm. Ann Nucl Med, 34(10): 762-71. [DOI:10.1007/s12149-020-01500-8]
26. Srinivas SM, Dhurairaj T, Basu S, Bural G, Surti S, Alavi A (2009) A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med, 23(4): 341-8. [DOI:10.1007/s12149-009-0241-9]
27. López-Mora DA, Carrió I, Flotats A (2022) digital PET vs analog PET: Clinical Implications? Seminars in Nuclear Medicine, 52: 302-311. [DOI:10.1053/j.semnuclmed.2021.10.004]
28. Fuentes-Ocampo F, López-Mora DA, Flotats A, Paillahueque G, Camacho V, Duch J, et al. (2019) Digital vs. analog PET/CT: intra-subject comparison of the SUVmax in target lesions and reference regions. Eur J Nucl Med Mol Imaging, 46(8): 1745-1750. [DOI:10.1007/s00259-018-4256-0]
29. Oddstig J, Leide Svegborn S, Almquist H, Bitzén U, Garpered S, Hedeer F, et al. (2019) Comparison of conventional and Si-photomultiplier-based PET systems for image quality and diagnostic performance. BMC Med Imaging, 19(1): 1-9. [DOI:10.1186/s12880-019-0377-6]
30. Rausch I, Cal-González J, Dapra D, Gallowitsch HJ, Lind P, Beyer T, et al. (2015) Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys, 2(1): 1-17. [DOI:10.1186/s40658-015-0132-1]
31. Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW (2011) Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol, 56(8): 2375-89. [DOI:10.1088/0031-9155/56/8/004]
Karaca M, Doyuran M, Çakır T, Karyağar S, Çağlar M. A comparison of image quality between digital and analog pet for spatial resolution: A phantom study. Int J Radiat Res 2025; 23 (2) :397-405 URL: http://ijrr.com/article-1-6399-en.html