[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: ::
Back to the articles list Back to browse issues page
A comparison of image quality between digital and analog pet for spatial resolution: A phantom study
M.C. Karaca , M. Doyuran , T. Çakır , S. Karyağar , M. Çağlar
Department of Health Physics, Graduate School of Health Sciences, İstanbul Medipol University, İstanbul, Türkiye , mervecinoglu@gmail.com
Abstract:   (31 Views)
Background: The positron emission tomography (PET) technology has undergone continuous innovation in recent years. New-technology digital PETs are silicon photomultiplier (SiPM) PET systems with digital readouts, which contribute to improved image resolution. This study aimed to compare the image quality of sub-centimeter lesions of NEMA PET phantom images obtained under identical imaging conditions (identical lesion volumes, identical activity and identical scanning time) using dPET, analog PET-1 and analog PET-2 acquired in the clinic. Materials and Methods: For image analysis, a standard NEMA IEC body phantom was used. In the present study, the lesion detection performance of all PETs was evaluated in two categories, sub- and over-centimeter size. The imaging durations of this study were 1, 2, 3, and 5 minutes, while the injection doses were 2.33 and 5.33 kBq/ml for the 1/4 and 1/8 background-to-lesion ratios, respectively. For a quantitative assessment of image quality, a circular ROI with activity concentrations (ACmean) and the mean recovery coefficient were calculated for each lesion via the ACmean. Results: Our study revealed approximately 15% greater RCmean values for dPET with SiPM technology compared to the analog PET-2 with PMT technology. However, analog PET-1 exhibited a significant lack of performance, especially when compared to analog PET-2 and dPET. Conclusion: Although dPET, the first generation of dPETs analyzed in the present study, yields relatively better RCmean values than analog PETs, it is not able to entirely eliminate the unfavorable impacts of PVE for sub-centimeter lesions.
Keywords: Digital PET, analog PET, lesion detection capability, image quality.
Full-Text [PDF 1396 kb]   (11 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4714