[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 23, Issue 2 (5-2025) ::
Int J Radiat Res 2025, 23(2): 461-466 Back to browse issues page
Identification of biomarkers for radiation-induced coronary heart disease in breast cancer patients
X.L. Huang , Z. Cai , Y. Xu
Cardiac Intensive Care Unit (CCU), West China Hospital of Sichuan University, Chengdu, Sichuan, China , 1419850448@qq.com
Abstract:   (218 Views)
Background: This study aims to identify biomarkers associated with radiation-induced coronary heart disease (RICHD) in breast cancer patients by integrating bioinformatics approaches with single-cell sequencing data, providing potential therapeutic targets for RICHD treatment. Materials and Methods: Gene expression profiles associated with coronary heart disease were sourced from the Gene Expression Omnibus (GEO) database, and GEO2R was utilized to identify differentially expressed genes.  Whole-genome sequencing and clinical data of breast cancer patients were obtained from The Cancer Genome Atlas (TCGA) database. Gene expression levels were analyzed using the 'Limma' package to compare radiation-exposed and non-exposed groups. Biological functional enrichment analysis was conducted using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The intersection of TCGA and GEO identified key genes. Further analyses of these key genes in breast cancer patients were conducted using the GEPIA, Kaplan-Meier Plotter websites, and single-cell sequencing results. Results: The intersection of datasets from breast cancer and coronary heart disease revealed Hemoglobin A2(HBA2) as a key gene associated with RICHD. HBA2 exhibited statistically significant differences in mRNA expression levels between breast cancer and normal tissues (P<0.05). Kaplan-Meier Plotter analysis revealed a significant prognostic difference between breast cancer patients with varying HBA2 expression levels (P=0.005). HBA2 exhibited significant expression levels in CD8+ T cells. Conclusion: HBA2 could be a biomarker and therapeutic target for RICHD, offering new perspectives for clinical management of RICHD patients.
Keywords: DNA, Hemoglobin A2, radiation-induced coronary heart disease, radiotherapy, single-cell RNA sequencing.
Full-Text [PDF 874 kb]   (65 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Song J, Tang T, Caudrelier JM, et al. (2021) Dose-sparing effect of deep inspiration breath hold technique on coronary artery and left ventricle segments in treatment of breast cancer. Radiother Oncol, 154: 101-109. [DOI:10.1016/j.radonc.2020.09.019]
2. Pan L, Lei D, Wang W, et al. (2020) Heart dose linked with cardiac events and overall survival in lung cancer radiotherapy: A meta-analysis. Medicine (Baltimore), 99: e21964. [DOI:10.1097/MD.0000000000021964]
3. Pedersen PH, Vergari C, Tran A, et al. (2019) A Nano-dose protocol for cobb angle assessment in children with scoliosis: results of a phantom-based and clinically validated study. Clin Spine Surg, 32: E340-e345. [DOI:10.1097/BSD.0000000000000834]
4. Yang EH, Marmagkiolis K, Balanescu DV, et al. (2021) Radiation-induced vascular disease-a state-of-the-art review. Front Cardiovasc Med, 8: 652761. [DOI:10.3389/fcvm.2021.652761]
5. Bates JE, Rancati T, Keshavarz H, et al. (2024) Cardiac disease in childhood cancer survivors treated with radiation therapy: A PENTEC Comprehensive review. Int J Radiat Oncol Biol Phys, 119: 522-532. [DOI:10.1016/j.ijrobp.2023.03.045]
6. Leung HW, Chan AL, Muo CH (2016) Late cardiac morbidity of adjuvant radiotherapy for early breast cancer - A population-based study. J Cardiol, 67: 567-571. [DOI:10.1016/j.jjcc.2015.07.009]
7. Marks LB, Zagar TM, Kaidar-Person O (2017) Reassessing the time course for radiation-induced cardiac mortality in patients with breast cancer. Int J Radiat Oncol Biol Phys, 97: 303-305. [DOI:10.1016/j.ijrobp.2016.10.036]
8. Jacob S, Pathak A, Franck D, et al. (2016) Early detection and prediction of cardiotoxicity after radiation therapy for breast cancer: the BACCARAT prospective cohort study. Radiat Oncol, 11: 54. [DOI:10.1186/s13014-016-0627-5]
9. Riou O, Bourgier C, Fenoglietto P, et al. (2015) Does nodal irradiation (clavicular and internal mammary chains) increase the toxicity of adjuvant breast radiotherapy? Cancer Radiother, 19: 261-264. [DOI:10.1016/j.canrad.2015.02.007]
10. Cuomo JR, Sharma GK, Conger PD, et al. (2016) Novel concepts in radiation-induced cardiovascular disease. World Journal of Cardiology, 8: 504-519. [DOI:10.4330/wjc.v8.i9.504]
11. Banaei A, Hashemi B, Bakhshandeh M (2022) Estimating cancer risks due to whole lungs low dose radiotherapy with different techniques for treating COVID-19 pneumonia. Radiation Oncology, 17: 10. [DOI:10.1186/s13014-021-01971-7]
12. van Nimwegen FA, Schaapveld M, Cutter DJ, et al. (2016) Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol, 34: 235-243. [DOI:10.1200/JCO.2015.63.4444]
13. Henson KE, McGale P, Darby SC, et al. (2020) Cardiac mortality after radiotherapy, chemotherapy and endocrine therapy for breast cancer: Cohort study of 2 million women from 57 cancer registries in 22 countries. Int J Cancer, 147: 1437-1449. [DOI:10.1002/ijc.32908]
14. Kim L, Loccoh EC, Sanchez R, et al. (2020) Contemporary understandings of cardiovascular disease after cancer radiotherapy: a focus on ischemic heart disease. Curr Cardiol Rep, 22: 151. [DOI:10.1007/s11886-020-01380-4]
15. Wan Y, Zhang X, Leng H, et al. (2020) Identifying hub genes of papillary thyroid carcinoma in the TCGA and GEO database using bioinformatics analysis. PeerJ, 8: e9120. [DOI:10.7717/peerj.9120]
16. Song D, Tian J, Hu Y, et al. (2020) Identification of biomarkers associated with diagnosis and prognosis of gastroesophageal junction adenocarcinoma-a study based on integrated bioinformatics analysis in GEO and TCGA database. Medicine (Baltimore), 99: e23605. [DOI:10.1097/MD.0000000000023605]
17. Zeng L, Fan X, Wang X, et al. (2019) Bioinformatics analysis based on multiple databases identifies hub genes associated with hepatocellular carcinoma. Curr Genomics, 20: 349-361. [DOI:10.2174/1389202920666191011092410]
18. Xiao H, Wang K, Li D, et al. (2021) Evaluation of FGFR1 as a diagnostic biomarker for ovarian cancer using TCGA and GEO datasets. PeerJ, 9: e10817. [DOI:10.7717/peerj.10817]
19. You Y, Ru X, Lei W, et al. (2020) Developing the novel bioinformatics algorithms to systematically investigate the connections among survival time, key genes and proteins for Glioblastoma multiforme. BMC Bioinformatics, 21: 383. [DOI:10.1186/s12859-020-03674-4]
20. Xu Y, Wu G, Li J, et al. (2020) Screening and identification of key biomarkers for bladder cancer: A study based on TCGA and GEO data. Biomed Res Int, 2020: 8283401. [DOI:10.1155/2020/8283401]
21. Azizi E, Carr AJ, Plitas G, et al. (2018) Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell, 174: 1293-1308.e1236. [DOI:10.1016/j.cell.2018.05.060]
22. Mo L, Liu J, Yang Z, et al. (2020) DNAJB4 identified as a potential breast cancer marker: evidence from bioinformatics analysis and basic experiments. Gland Surg, 9: 1955-1972. [DOI:10.21037/gs-20-431]
23. Xue JM, Liu Y, Wan LH, et al. (2020) Comprehensive analysis of differential gene expression to identify common gene signatures in multiple cancers. Med Sci Monit, 26: e919953. [DOI:10.12659/MSM.919953]
24. Liu S, Liu X, Wu J, et al. (2020) Identification of candidate biomarkers correlated with the pathogenesis and prognosis of breast cancer via integrated bioinformatics analysis. Medicine (Baltimore), 99: e23153. [DOI:10.1097/MD.0000000000023153]
25. Dan WC, Guo XY, Zhang GZ, et al. (2023) Integrative analyses of radiation-related genes and biomarkers associated with breast cancer. Eur Rev Med Pharmacol Sci, 27: 256-274.
26. Chen J, Hou C, Wang P, et al. (2019) Grade II/III glioma microenvironment mining and its prognostic merit. World Neurosurg, 132: e76-e88. [DOI:10.1016/j.wneu.2019.08.253]
27. Frangogiannis NG (2017) The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest, 127: 1600-1612. [DOI:10.1172/JCI87491]
28. Karsdal MA, Manon-Jensen T, Genovese F, et al. (2015) Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol, 308: G807-830. [DOI:10.1152/ajpgi.00447.2014]
29. Oskarsson T (2013) Extracellular matrix components in breast cancer progression and metastasis. Breast, 22 (Suppl 2): S66-72. [DOI:10.1016/j.breast.2013.07.012]
30. Sun Y, Zou J, Ouyang W, et al. (2020) Identification of PDE7B as a potential core gene involved in the metastasis of clear cell renal cell carcinoma. Cancer Manag Res, 12: 5701-5712. [DOI:10.2147/CMAR.S259192]
31. Hou C, Fei S, Jia F (2024) Necroptosis and immune infiltration in hypertrophic cardiomyopathy: novel insights from bioinformatics analyses. Front Cardiovasc Med, 11: 1293786. [DOI:10.3389/fcvm.2024.1293786]
32. Bielinski SJ, Berardi C, Decker PA, et al. (2017) Hepatocyte growth factor demonstrates racial heterogeneity as a biomarker for coronary heart disease. Heart, 103: 1185-1193. [DOI:10.1136/heartjnl-2016-310450]
33. Dong Y, Chen H, Gao J, et al. (2019) Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol, 136: 27-41. [DOI:10.1016/j.yjmcc.2019.09.001]
34. Chen B, Tang H, Chen X, et al. (2019) Transcriptomic analyses identify key differentially expressed genes and clinical outcomes between triple-negative and non-triple-negative breast cancer. Cancer Manag Res, 11: 179-190. [DOI:10.2147/CMAR.S187151]
35. Sun X, Sun Z, Zhu Z, et al. (2014) Clinicopathological significance and prognostic value of lactate dehydrogenase A expression in gastric cancer patients. PLoS One, 9: e91068. [DOI:10.1371/journal.pone.0091068]
36. Yang L, Yu J, Tao L, et al. (2022) Cuproptosis-related lncRNAs are biomarkers of prognosis and immune microenvironment in head and neck squamous cell carcinoma. Front Genet, 13: 947551. [DOI:10.3389/fgene.2022.947551]
37. Tian C, Zhou S, Yi C (2018) High NUP43 expression might independently predict poor overall survival in luminal A and in HER2+ breast cancer. Future Oncol, 14: 1431-1442. [DOI:10.2217/fon-2017-0690]
38. Li X, Gao Y, Kou C, et al. (2024) Association of the RNF146 rs2180341 single nucleotide polymorphism with breast cancer susceptibility and prognosis in northern Chinese population. Indian Journal of Pharmaceutical Sciences, 86: 8. [DOI:10.36468/pharmaceutical-sciences.spl.981]
39. Umemura S, Shirane M, Takekoshi S, et al. (2010) High expression of thymidine phosphorylase in basal-like breast cancers: Stromal expression in EGFR- and/or CK5/6-positive breast cancers. Oncol Lett, 1: 261-266. [DOI:10.3892/ol_00000046]
40. Gates JD, Clifton GT, Benavides LC, et al. (2010) Circulating regulatory T cells (CD4+CD25+FOXP3+) decrease in breast cancer patients after vaccination with a modified MHC class II HER2/neu (AE37) peptide. Vaccine, 28: 7476-7482. [DOI:10.1016/j.vaccine.2010.09.029]
41. Greene LI, Bruno TC, Christenson JL, et al. (2019) A role for tryptophan-2,3-dioxygenase in CD8 T-cell suppression and evidence of tryptophan catabolism in breast cancer patient plasma. Mol Cancer Res, 17: 131-139. [DOI:10.1158/1541-7786.MCR-18-0362]
42. Andreata F, Iannacone M (2024) The hidden strength of CD8(+) T cells in chronic hepatitis B. Nat Immunol 25, 1515-1516. [DOI:10.1038/s41590-024-01939-1]
43. Kuznetsova M, Lopatnikova J, Shevchenko J, et al. (2019) Cytotoxic activity and memory T cell subset distribution of in vitro-stimulated CD8(+) T cells specific for HER2/neu Epitopes. Front Immunol, 10: 1017. [DOI:10.3389/fimmu.2019.01017]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Huang X, Cai Z, Xu Y. Identification of biomarkers for radiation-induced coronary heart disease in breast cancer patients. Int J Radiat Res 2025; 23 (2) :461-466
URL: http://ijrr.com/article-1-6423-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 2 (5-2025) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.07 seconds with 50 queries by YEKTAWEB 4714