[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

Volume 23, Issue 3 (7-2025)                   Int J Radiat Res 2025, 23(3): 691-695 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dahdouh N, Chaoui Z, Khoudri S. Radiation pneumonitis incidence in chest wall and regional lymph nodes with monoisocentric and dual isocentric techniques after mastectomy. Int J Radiat Res 2025; 23 (3) :691-695
URL: http://ijrr.com/article-1-6643-en.html
Department of Laboratory of Optoelectronics and Devices, Physics Department, Faculty of Sciences, UFAS1; Algeria , narimane.dahdouh@univ-setif.dz
Abstract:   (226 Views)
Background: Our new present study uses biological indices to predict NTCP (normal tissue complications probability) and TCP (tumor control probability) in breast cancer patients undergoing mastectomy planned with MIT (monoisocentric technique) and DIT (dual isocentric technique) in the 3DCRT (three-dimensional conformal radiotherapy). Materials and Methods: This study involved using DVH (dose-volume histograms) from randomly selected patients to calculate the NTCP and TCP with our in-house program, RADBIOFOR. We focused on specific parameters related to pneumonitis in the lungs, pericarditis in the heart, and tumor control for the targeted area. Results: The incidence of clinical symptomatic pneumonitis grade 2 is lower for MIT than DIT, with a mean  difference of 6.86%, 1.39% for symptomatic radiation pneumonitis grade 2, 1.17% and 0.82% for radiation pneumonitis grade 2. Both techniques produced comparable results, with MIT showing slightly better control than DIT, resulting in a mean difference of 0.18%. Our study suggests that the mean lung dose significantly affects the incidence of radiation pneumonitis. Conclusion: MIT outperforms DIT and offers better lung and heart protection with a lower incidence of radiation complications. Similar local control rates in the chest wall and lymph node region.
Full-Text [PDF 960 kb]   (82 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology

References
1. 1. Joya M, Kordane T, Karimi AH, et al. (2023) Can dynamic wedges reduce thyroid dose in breast radiotherapy compared to physical wedges?. Int J Radiat Res, 21(1): 67-72.
2. Haussmann J, Corradini S, Nestle-Kraemling C, et al. (2020) Recent advances in radiotherapy of breast cancer. Radiat Oncol, 15: 1-10. [DOI:10.1186/s13014-020-01501-x]
3. Kwong DLW, McGale P, Taylor C, et al. (2014) Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. The Lancet, 383(9935): 2127-35. [DOI:10.1016/S0140-6736(14)60488-8]
4. Rutqvist LE, Cedermark B, Glas U, et al. (1990) Randomized trial of adjuvant tamoxifen combined with postoperative radiation therapy or adjuvant chemotherapy in postmenopausal breast cancer. Cancer, 66: 89-96. https://doi.org/10.1002/1097-0142(19900701)66:1<89::AID-CNCR2820660117>3.0.CO;2-G [DOI:10.1002/1097-0142(19900701)66:13.0.CO;2-G]
5. Bray F, Ferlay J, Soerjomataram I, et al. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68: 394-424. [DOI:10.3322/caac.21492]
6. Sung H, Ferlay J, Siegel RL, et al. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71: 209-249. [DOI:10.3322/caac.21660]
7. Smaili F, Boudjella A, Dib A, et al. (2020) Epidemiology of breast cancer in women based on diagnosis data from oncologists and senologists in Algeria. Cancer Treat, 25: 100220. [DOI:10.1016/j.ctarc.2020.100220]
8. Najjar H and Easson A. (2010) Age at diagnosis of breast cancer in Arab nations. Int J Surg, 8: 448-452. [DOI:10.1016/j.ijsu.2010.05.012]
9. Podgorsak EB, Gosselin M, Kim TH, et al. (1984) A simple isocentric technique for irradiation of the breast, chest wall and peripheral lymphatics. Br J Radiol, 57: 57-63. [DOI:10.1259/0007-1285-57-673-57]
10. Rosato FE, Martin WL, Brady LW. (1969) Simple mastectomy and radiotherapy in the treatment of breast cancer. Am Surg, 35: 613-616.
11. Mège A, De Rauglaudre G, Bodez V, et al. (2008) Radiothérapie innovante du cancer du sein: épargne cardiaque et pulmonaire. Cancer Radioter, 12: 718. [DOI:10.1016/j.canrad.2008.08.015]
12. Banaei A, Hashemi B, Bakhshandeh M (2015) Comparing the monoisocentric and dual isocentric techniques in chest wall radiotherapy of mastectomy patients. J Appl Clin Med Phys, 16: 130-138. [DOI:10.1120/jacmp.v16i1.5069]
13. Abi KST, Habibian S, Salimi M, et al. (2021) Tumor control probability (TCP) and normal tissue complication probability (NTCP) in mono and dual-isocentric techniques of breast cancer radiation therapy. Archives of Breast Cancer:192-202. [DOI:10.32768/abc.202183192-202]
14. Guilbert P, Gaillot-Petit N, Vieren L, et al. (2012) Techniques classique bidimensionnelle et mono-isocentrique tridimensionnelle dans l'irradiation du sein et des aires ganglionnaires: comparaison dosimétrique. Cancer Radiother, 16: 473-478. [DOI:10.1016/j.canrad.2012.05.008]
15. Mermut Ö, Ata AO, Trabulus DC. (2021) Quantitative and dosimetric analysis for treating synchronous bilateral breast cancer using two radiotherapy planning techniques. Polish J Medical Phys Eng, 27: 201-206. [DOI:10.2478/pjmpe-2021-0024]
16. Nadi S, Abedi-Firouzjah R, Banaei A, et al. (2020) Dosimetric comparison of level II lymph nodes between mono-isocentric and dual-isocentric approaches in 3D-CRT and IMRT techniques in breast radiotherapy of mastectomy patients. J Radiother Pract, 19: 254-258. [DOI:10.1017/S146039691900061X]
17. Omer H, Sulieman A, Alzimami K (2015) Risks of lung fibrosis and pneumonitis after postmastectomy electron radiotherapy. Radiat Prot Dosimetry, 165(1-4): 499-502. [DOI:10.1093/rpd/ncv111]
18. Zhang H and Luo Y (2024) Construction and validation analysis of a risk factor and risk prediction model for radiation dermatitis in patients undergoing postoperative radiotherapy for early stage breast cancer. Int J Radiat Res, 22(3): 677-684. [DOI:10.61186/ijrr.22.3.677]
19. Shahbazi S, Ferdosi R, Malekzadeh R, et al. (2023) Predicting radiation therapy outcome of pituitary gland in head and neck cancer using Artificial Neural Network (ANN) and radiobiological models. Int J Radiat Res, 21(1): 53-59.
20. Okunieff P, Morgan D, Niemierko A, et al. (1995) Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys, 32: 1227-1237. [DOI:10.1016/0360-3016(94)00475-Z]
21. Semenenko VA and Li XA (2008) Lyman-Kutcher-Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data. Phys Med Biol, 53(3): 737. [DOI:10.1088/0031-9155/53/3/014]
22. Seppenwoolde Y, Lebesque JV, De Jaeger K, et al. (2003) Comparing different NTCP models that predict the incidence of radiation pneumonitis. Int J Radiat Oncol Biol Phys, 55(3): 724-735. [DOI:10.1016/S0360-3016(02)03986-X]
23. Rancati T, Wennberg B, Lind P, et al. (2007) Early clinical and radiological pulmonary complications following breast cancer radiation therapy: NTCP fit with four different models. Radiother Oncol, 82(3): 308-316. [DOI:10.1016/j.radonc.2006.12.001]
24. Kwa SL, Lebesque JV, Theuws JC, et al. (1998) Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys, 42(1): 1-9. [DOI:10.1016/S0360-3016(98)00196-5]
25. Burman C, Kutcher GJ, Emami B, et al. (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys, 21(1): 123-135. [DOI:10.1016/0360-3016(91)90172-Z]
26. Rutqvist LE, Pettersson D, Johansson H. (1993) Adjuvant radiation therapy versus surgery alone in operable breast cancer: long-term follow-up of a randomized clinical trial. Radiother Oncol, 26(2): 104-110. [DOI:10.1016/0167-8140(93)90090-U]
27. Uematsu M, Bornstein BA, Recht A, et al. (1993) Long-term results of post-operative radiation therapy following mastectomy with or without chemotherapy in stage I-III breast cancer. Int J Radiat Oncol Biol Phys, 25(5): 765-770. [DOI:10.1016/0360-3016(93)90303-D]
28. Khoudri S and Chaoui ZEA (2022) Dosimetric beam matching analysis of MV photons and electrons therapy. Int J Radiat Res, 20(3): 693-700.
29. Eclipse Algorithm Reference guide version 11.0.31 (2009) iso 13485(P/N B502612R03A) Varian Medical System UKLtd.
30. Gay HA and Niemierko A (2007) A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys Med, 23: 115-125. [DOI:10.1016/j.ejmp.2007.07.001]
31. Lyman JT (1985) Complication probability as assessed from dose-volume histograms. J Radiat Res, 8(2s): 13-19. [DOI:10.2307/3576626]
32. Kutcher GJ, Burman C, Brewster L, et al. (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys, 21(1): 137-146. [DOI:10.1016/0360-3016(91)90173-2]
33. Warkentin B, Stavrev P, Stavreva N, et al. (2004) A TCP‐NTCP estimation module using DVHs and known radiobiological models and parameter sets. J Appl Clin Med Phys, 5(1): 50-63. [DOI:10.1120/jacmp.v5i1.1970]
34. Cody WJ (1969) Rational chebyshev approximations for the error function. Math Comput, 23: 631-637. [DOI:10.1090/S0025-5718-1969-0247736-4]
35. Zhu J (2013) Modèles prédictifs de toxicité en radiothérapie par modulation d'intensité (Doctoral dissertation, Rennes 1).
36. Chang JH, Gehrke C, Prabhakar R, et al. (2016) RADBIOMOD: a simple program for utilising biological modelling in radiotherapy plan evaluation. Phys Med, 32: 248-254. [DOI:10.1016/j.ejmp.2015.10.091]
37. Brahme A (1984) Dosimetric precision requirements in radiation therapy. Acta Radiol, 23(5): 379-391. [DOI:10.3109/02841868409136037]
38. Emami B (2013) Tolerance of normal tissue to therapeutic radiation. Rep Pract Oncol Radiother, 1(1): 35-48.
39. Vanaken ML, Breneman JC, Elson HR, et al. (1988) Incorporation of patient immobilization, tissue compensation and matchline junction technique for three-field breast treatment. Med Dosim, 13(3): 131-5. [DOI:10.1016/0958-3947(88)90059-3]
40. Green S and Weiss GR (1992) Southwest Oncology Group standard response criteria, endpoint definitions and toxicity criteria. Invest New Drugs, 10: 239-253. [DOI:10.1007/BF00944177]
41. Hurkmans CW, Cho BJ, Damen E, et al. (2002) Reduction of cardiac and lung complication probabilities after breast irradiation using conformal radiotherapy with or without intensity modulation. Radiother Oncol, 62(2): 163-71. [DOI:10.1016/S0167-8140(01)00473-X]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Radiation Research
Persian site map - English site map - Created in 0.03 seconds with 48 queries by YEKTAWEB 4722