|
|
Lin R, Xiao G, Xiu W, Cai S. Accuracy evaluation of digital mammography and its combination with magnetic resonance imaging in the diagnosis of ductal carcinoma in situ. Int J Radiat Res 2025; 23 (3) :707-713 URL: http://ijrr.com/article-1-6645-en.html
Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001,Fujian Province, China , Linruiying@mjc-edu.cn
Abstract: (216 Views)
Background: It aimed to compare the efficacy of digital mammography and magnetic resonance imaging (MRI) used alone and in combination in the diagnosis of ductal carcinoma in situ (DCIS). Material and Methods: 78 patients with pathologically confirmed DCIS were enrolled in this retrospective study. All patients underwent digital mammography and MRI. The imaging results were graded using the Breast Imaging Reporting and Data System (BI-RADS), and the diagnostic sensitivity (Sen), specificity (Spe), and accuracy (Acc) of the two methods, both individually and in combination, were calculated. Results: imaging findings were classified as highly suspicious (BI-RADS grade 4 and above) or not highly suspicious (BI-RADS grade 3 and below). The Sen, Spe, and Acc of digital mammography in the diagnosis of DCIS were 68.97%, 60%, and 66.67%, respectively. The Sen, Spe, and Acc of MRI were 77.5%, 70%, and 75.64%, respectively. When the two techniques were combined, the Sen was increased to 87.93%, the Spe was 75%, and the Acc was 84.62%. There were visible distinctions in Sen and Acc between the combined use and single mammography detection (P<0.05). Conclusion: the combined use of digital mammography and MRI shows high Sen and Acc in the diagnosis of DCIS, which is more effective than single method. This article supports the use of multimodal diagnostic strategies in clinical practice to improve the diagnostic efficiency of DCIS.
References
1. Knowlton CA, Jimenez RB, Moran MS (2022) DCIS: risk assessment in the molecular era. Seminars in Radiation Oncology, 32(3): 189-197. [ DOI:10.1016/j.semradonc.2022.01.005] 2. Farante G, Toesca A, Magnoni F, Lissidini G, Vila J, Mastropasqua M, et al. (2022) Advances and controversies in management of breast ductal carcinoma in situ (DCIS). European Journal of Surgical Oncology, 48(4): 736-741. [ DOI:10.1016/j.ejso.2021.10.030] 3. Ma T, Semsarian CR, Barratt A, Parker L, Pathmanathan N, Nickel B, Bell KJL (2023) Should low-risk DCIS lose the cancer label? An evidence review. Br Can Res Treat, 199(3): 415-433. [ DOI:10.1007/s10549-023-06934-y] 4. Hayward MK and Weaver VM (2021) Improving DCIS diagnosis and predictive outcome by applying artificial intelligence. Biochimica et Biophysica acta. Reviews on Cancer, 1876(1): 188555(1-11). [ DOI:10.1016/j.bbcan.2021.188555] 5. Pinder SE, Thompson AM, Wesserling J (2022) Low-risk DCIS. What is it? Observe or excise? Virchows Archiv, 480(1): 21-32. [ DOI:10.1007/s00428-021-03173-8] 6. Petrone I, Santos ECD, Binato R, Abdelhay E (2023) Epigenetic al terations in DCIS progression: what can lncRNAs teach Us? Intl J Mol Sci, 24(10): 8733(1-16). [ DOI:10.3390/ijms24108733] 7. Yamamoto K, Matsumoto H, Matsumoto S, Sakai R, Kitao A, Watanabe M (2023) Unexpected appearance of KMT2A: MLLT10 fusion transcript in acute myeloid leukemia with t(5;11)(q31;q23.3). Cancer Genetics, 272-273: 41-46. [ DOI:10.1016/j.cancergen.2023.02.002] 8. Tang G, Li S, Toruner GA, Jain P, Tang Z, Hu S, et al. (2023) Clinical impact of 5'MYC or 3'MYC gain/loss detected by FISH in patients with aggressive B-cell lymphomas. Cancer Genetics, 272-273: 1-8. [ DOI:10.1016/j.cancergen.2022.12.001] 9. Narod SA and Sopik V (2022) Countercurrents: DCIS or cancer? Why all the confusion? Current Oncology, 29(7): 4936-4940. [ DOI:10.3390/curroncol29070392] 10. Elder K, Matheson J, Nickson C, Box G, Ellis J, Mou A, et al. (2023) Contrast enhanced mammography in breast cancer surveillance. Br Can Res Treat, 199(2): 221-230. [ DOI:10.1007/s10549-023-06916-0] 11. Grimm LJ, Neely B, Hou R, Selvakumaran V, Baker JA, Yoon SC, et al. (2021) Mixed-methods study to predict upstaging of DCIS to inva sive disease on mammography. AJR. American Journal of Roentgen ology, 216(4): 903-911. [ DOI:10.2214/AJR.20.23679] 12. Shi J, Chen L, Wang B, Zhang H, Xu L, Ye J, Liu Y, Shao Y, Sun X, Zou Y (2023) Diagnostic value of ultrasound elastography in the differ entiation of breast invasive ductal carcinoma and ductal carcinoma in situ. Current Medical Imaging, 19(3): 286-291. [ DOI:10.2174/1573405618666220721091940] 13. Ban K, Tsunoda H, Watanabe T, Kaoku S, Yamaguchi T, Ueno E, Hi rokaga K, Tanaka K (2020) Characteristics of ultrasonographic imag es of ductal carcinoma in situ with abnormalities of the ducts. Jour nal of Medical Ultrasonics (2001), 47(1): 107-115. [ DOI:10.1007/s10396-019-00981-z] 14. Gao L, Lai X, Zhang J, Jiang Y, Li J (2023) Sonographic prediction of intraductal papillary carcinoma with partially cystic breast lesions. BMC Medical Imaging, 23(1): 3(1-7). [ DOI:10.1186/s12880-022-00934-y] 15. Comstock CE, Gatsonis C, Newstead GM, Snyder BS, Gareen IF, Bergin JT, et al. (2020) Comparison of abbreviated beast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening. JAMA, 323(8): 746-756. [ DOI:10.1001/jama.2020.0572] 16. Bernardi D, Gentilini MA, De Nisi M, Pellegrini M, Fantò C, Valentini M, et al. (2020) Effect of implementing digital breast tomosynthesis (DBT) instead of mammography on population screening outcomes including interval cancer rates: Results of the Trento DBT pilot eval uation. Breast, 50: 135-140. [ DOI:10.1016/j.breast.2019.09.012] 17. Liu H and Weng J (2022) A comprehensive bioinformatic analysis of cyclin-dependent kinase 2 (CDK2) in glioma. Gene, 822: 146325(1-15). [ DOI:10.1016/j.gene.2022.146325] 18. Jochelson MS and Lobbes MBI (2021) Contrast-enhanced mam mography: state of the art. Radiology, 299(1): 36-48. [ DOI:10.1148/radiol.2021201948] 19. Sechopoulos I, Teuwen J, Mann R (2021) Artificial intelligence for breast cancer detection in mammography and digital breast tomo synthesis: state of the art. Seminars in Cancer Biology, 72: 214-225. [ DOI:10.1016/j.semcancer.2020.06.002] 20. Bartram A, Gilbert F, Thompson A, Mann GB, Agrawal A (2021) Breast MRI in DCIS size estimation, breast-conserving surgery and oncoplastic breast surgery. Cancer Treatment Reviews, 94: 102158(1-7). [ DOI:10.1016/j.ctrv.2021.102158] 21. Greenwood HI, Wilmes LJ, Kelil T, Joe BN (2020) Role of breast MRI in the evaluation and detection of DCIS: opportunities and chal lenges. Journal of Magnetic Resonance Imaging, 52(3): 697-709. [ DOI:10.1002/jmri.26985] 22. Shankar PR, Davenport MS, Helvie MA (2020) Prostate MRI and quality: lessons learned from breast imaging rad-path correlation. Abdom Radiol (NY), 45(12): 4028-4030. [ DOI:10.1007/s00261-019-02343-2] 23. Reig B, Kim E, Chhor CM, Moy L, Lewin AA, Heacock L (2023) Prob lem-solving breast MRI. Radiographics, 43(10): e230026(1-16). [ DOI:10.1148/rg.230026] 24. Yamaguchi R, Watanabe H, Mihara Y, Yamaguchi M, Tanaka M (2023) Histopathology of non-mass-like breast lesions on ultra sound. Journal of Medical Ultrasonics (2001), 50(3): 375-380. [ DOI:10.1007/s10396-023-01286-y] 25. Liu Z, Yao B, Wen J, Wang M, Ren Y, Chen Y, et al. (2024) Voxel-wise mapping of DCE-MRI time-intensity-curve profiles enables visualiz ing and quantifying hemodynamic heterogeneity in breast lesions. European Radiology, 34(1): 182-192. [ DOI:10.1007/s00330-023-10102-7] 26. Gong X, Yuan S, Xiang Y, Fan L, Zhou H (2023) Domain knowledge-guided adversarial adaptive fusion of hybrid breast ultrasound da ta. Computers in Biology and Medicine, 164: 107256(1-13). [ DOI:10.1016/j.compbiomed.2023.107256] 27. Saadatmand S, Geuzinge HA, Rutgers EJT, Mann RM, de Roy van Zuidewijn DBW, Zonderland HM, et al.; FaMRIsc study group (2019) MRI versus mammography for breast cancer screening in women with familial risk (FaMRIsc): a multicentre, randomized, controlled trial. The Lancet Oncology, 20(8): 1136-1147. [ DOI:10.1016/S1470-2045(19)30275-X] 28. Zhao YF, Chen Z, Zhang Y, Zhou J, Chen JH, Lee KE, et al. (2021) Di agnosis of breast cancer using radiomics models built based on dy namic contrast enhanced MRI combined with mammography. Frontiers in Oncology, 11: 774248(1-11). [ DOI:10.3389/fonc.2021.774248] 29. Liu H and Li Y (2022) Potential roles of cornichon family AMPA re ceptor auxiliary protein 4 (CNIH4) in head and neck squamous cell carcinoma. Cancer Biomarkers: Section A of Disease Markers, 35(4): 439-450. [ DOI:10.3233/CBM-220143] 30. Panigrahi B, Fernandes K, Mullen LA, Oluyemi E, Myers KS, Philip M, Carlo PD, Ambinder EB (2023) Solitary Dilated Ducts Revisited: Ma lignancy Rate and Implications for Management. Acad Radiol, 30(5): 807-813. [ DOI:10.1016/j.acra.2022.08.018] 31. Zhou J, Li M, Liu D, Sheng F, Cai J (2023) Differential Diagnosis of Benign and Malignant Breast Papillary Neoplasms on MRI With Non-mass Enhancement. Acad Radiol, 30 (Suppl 2): S127-S132. [ DOI:10.1016/j.acra.2023.02.010] 32. Meurs CJC, van Rosmalen J, Menke-Pluijmers MBE, Siesling S, Westenend PJ (2023) Predicting lymph node metastases in patients with biopsy-proven ductal carcinoma in situ of the breast: develop ment and validation of the DCIS-met model. Ann Surg Oncol, 30(4): 2142-2151. [ DOI:10.1245/s10434-022-12900-7]
|