1. Martijn HA, Lambers KTA, Dahmen J, et al. (2021) High incidence of (osteo)chondral lesions in ankle fractures. Knee Surg Sports Traumatol Arthrosc, 29(5): 1523-1534. [ DOI:10.1007/s00167-020-06187-y] 2. Xue P, Chen X, Chen S, et al. (2021) The value of CT 3D reconstruction in the classification and nursing effect evaluation of ankle fracture. J Healthc Eng, 2021: 9596518. [ DOI:10.1155/2021/9596518] 3. Cuddy K, Khatib B, Bell RB, et al. (2018) Use of intraoperative computed tomography in craniomaxillofacial trauma surgery. J Oral Maxillofac Surg, 76(5): 1016-1025. [ DOI:10.1016/j.joms.2017.12.004] 4. Azman RR, Shah MNM, Ng KH (2019) Radiation safety in emergency medicine: Balancing the benefits and risks. Korean J Radiol, 20(3): 399-404. [ DOI:10.3348/kjr.2018.0416] 5. Shinde PP and Shah S (2018) A review of machine learning and deep learning applications[C]//2018 Fourth international conference on computing communication control and automation (ICCUBEA). IEEE, 4: 1-6. [ DOI:10.1109/ICCUBEA.2018.8697857] 6. Handelman GS, Kok HK, Chandra RV, et al. (2018) eDoctor: machine learning and the future of medicine. Journal of Internal Medicine, 284(6): 603-619. [ DOI:10.1111/joim.12822] 7. Lee YW, Choi JW, Shin EH (2021) Machine learning model for predicting malaria using clinical information. Computers in Biology and Medicine, 129: 104151. [ DOI:10.1016/j.compbiomed.2020.104151] 8. Sultan AS, Elgharib MA, Tavares T, et al. (2020) The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. J Oral Pathol Med, 49(9): 849-856. [ DOI:10.1111/jop.13042] 9. Ranganathan DG (2021). A study to find facts behind preprocessing on deep learning algorithms. Journal of Innovative Image Processing, 3(1): 66-74. [ DOI:10.36548/jiip.2021.1.006] 10. Oh JH, Kim HG, Lee KM (2023) Developing and evaluating deep learning algorithms for object detection: key points for achieving superior model performance. Korean Journal of Radiology, 24(7): 698-714. [ DOI:10.3348/kjr.2022.0765] 11. Achuthan S, Chatterjee R, Kotnala S, et al. (2022) Leveraging deep learning algorithms for synthetic data generation to design and analyze biological networks. J Biosci, 47: 43. [ DOI:10.1007/s12038-022-00278-3] 12. Zhang M, Lei M, Zhang J, et al. (2022) Feasibility study of three-dimensional printing knee model using the ultra-low-dose CT scan for preoperative planning and simulated surgery. Insights Imaging, 13(1): 151. [ DOI:10.1186/s13244-022-01291-8] 13. Lei M, Zhang M, Luo N, et al. (2022) The clinical performance of ultra-low-dose shoulder CT scans: The assessment on image and physical 3D printing models. PLoS One, 17(9): e0275297. [ DOI:10.1371/journal.pone.0275297] 14. Weinrich JM, Well L, Regier M, et al. (2018) MDCT in suspected lumbar spine fracture: comparison of standard and reduced dose settings using iterative reconstruction. Clin Radiol, 73(7): 675.e9-675.e15. [ DOI:10.1016/j.crad.2018.02.015] 15. Lei M, Zhang M, Li H, et al. (2022) The diagnostic performance of ultra-low-dose 320-row detector CT with different reconstruction algorithms on limb joint fractures in the emergency department. Jpn J Radiol, 40(10): 1079-1086. [ DOI:10.1007/s11604-022-01290-1] 16. Xiao M, Zhang M, Lei M, et al. (2023) Diagnostic accuracy of ultra-low-dose CT compared to standard-dose CT for identification of non-displaced fractures of the shoulder, knee, ankle, and wrist. Insights Imaging, 14(1): 40. [ DOI:10.1186/s13244-023-01389-7] 17. Jin L, Ge X, Lu F, et al. (2018) Low-dose CT examination for rib fracture evaluation: A pilot study. Medicine, 97(30): e11624. [ DOI:10.1097/MD.0000000000011624] 18. Murphy MC, Gibney B, Walsh J, et al. (2022) Ultra-low-dose cone-beam CT compared to standard dose in the assessment for acute fractures. Skeletal Radiology, 51(1): 153-159. [ DOI:10.1007/s00256-021-03825-5] 19. Alagic Z, Bujila R, Enocson A, et al. (2020) Ultra-low-dose CT for extremities in an acute setting: initial experience with 203 subjects. Skeletal radiology, 49(4): 531-539. [ DOI:10.1007/s00256-019-03309-7] 20. Elegbede A, Diaconu S, Dreizin D, et al. (2020) Low-dose computed tomographic scans for postoperative evaluation of craniomaxillofacial fractures: A pilot clinical study. Plastic and Reconstructive Surgery,146(2): 366-370. [ DOI:10.1097/PRS.0000000000007017] 21. Goetti R, Leschka S, Desbiolles L, et al. (2010) Quantitative computed tomography liver perfusion imaging using dynamic spiral scanning with variable pitch: feasibility and initial results in patients with cancer metastases. Invest Radiol, 45(7): 419-26. [ DOI:10.1097/RLI.0b013e3181e1937b] 22. Tang S, Zhang G, Chen Z, et al. (2021) Application of prospective ECG-gated multiphase scanning for coronary CT in children with different heart rates. Jpn J Radiol, 39(10): 946-955. [ DOI:10.1007/s11604-021-01133-5] 23. Yang Z and Liu Z (2020) The efficacy of 18F-FDG PET/CT-based diagnostic model in the diagnosis of colorectal cancer regional lymph node metastasis. Saudi J Biol Sci, 27(3): 805-811. [ DOI:10.1016/j.sjbs.2019.12.017] 24. Wang X, Zhang J, Yang S, et al. (2023) A generalizable and robust deep learning algorithm for mitosis detection in multicenter breast histopathological images. Med Image Anal, 84: 102703. [ DOI:10.1016/j.media.2022.102703] 25. Sakai Y, Hida T, Matsuura Y, et al. (2023) Impact of a new deep-learning-based reconstruction algorithm on image quality in ultra-high-resolution CT: clinical observational and phantom studies. Br J Radiol, 96(1141): 20220731. [ DOI:10.1259/bjr.20220731] 26. Lee KH, Lee JM, Moon SK, et al. (2012) Attenuation-based automatic tube voltage selection and tube current modulation for dose reduction at contrast-enhanced liver CT. Radiology, 265(2): 437-47. [ DOI:10.1148/radiol.12112434] 27. Lv P, Zhou Z, Liu J, et al. (2019) Can virtual monochromatic images from dual-energy CT replace low-kVp images for abdominal contrast-enhanced CT in small- and medium-sized patients? Eur Radiol, 29(6): 2878-2889. [ DOI:10.1007/s00330-018-5850-z] 28. Gokalp G (2019) Low kilovolt" prospective ECG-triggering" vs." retrospective ECG-gating" coronary CTA: comparison of image quality and radiation dose. International Journal of Radiation Research, 17(2): 209-216. 29. Xiao M, Zhang M, Liu J, et al. (2017) Iterative reconstruction combined with low dose CT in diagnosis of lumbar intervertebral disc hernia. Chinese Journal of Medical Imaging Technology, 33(3): 458-461. 30. Papadakis AE and Damilakis J (2019) Automatic tube current modulation and tube voltage selection in pediatric computed tomography: A phantom study on radiation dose and image quality. Invest Radiol, 54(5): 265-272. [ DOI:10.1097/RLI.0000000000000537] 31. Euler A, Taslimi T, Eberhard M, et al. (2021) Computed tomography angiography of the aorta-optimization of automatic tube voltage selection settings to reduce radiation dose or contrast medium in a prospective randomized trial. Invest Radiol, 56(5): 283-291. [ DOI:10.1097/RLI.0000000000000740]
|