[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 20, Issue 3 (7-2022) ::
Int J Radiat Res 2022, 20(3): 621-626 Back to browse issues page
Monte Carlo simulations of gamma-rays shielding with phthalonitrile - tungsten borides composites
M. Al Hassan , W.B. Liu , J. Wang , M.M.M. Ali , A. Rawashdeh
College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China , wlwb@163.com
Abstract:   (1142 Views)
Background: Recently, it has been demonstrated that thermosetting polymer composites have excellent gamma-rays shielding properties. Among them, phthalonitrile composites are the best suitable materials to replace the traditional shielding materials such as lead and concrete. Furthermore, tungsten-boride as high Z-material is an effective ionizing radiation shield. Materials and Methods: The gamma rays shielding properties of the phthalonitrile matrix (PH) reinforced with tungsten-boride (WB) at 661, 1172, and 1332 keV photon energies were investigated using MCNPX code and XCOM tool kit and compared to those of concrete as conventional shielding material and epoxy composites. MCNPX geometry was defined along the z-axis and described in the input file. The number of emitted photons was fixed at 107 at the source, which is supposed to be a monoenergetic point. Results: The simulated mass attenuation coefficients results are in good agreement with those calculated using the XCOM tool kit. Also, it was observed that at 661 keV photon energy, the shielding performances in term of Half-Value-Layer (HVL) are enhanced by3.08% and 22.01% for 30% and 50% of tungsten-boride concentrations compared to 30% of PbO concentration in the Epoxy-Clay composite and concrete respectively. Conclusion: In this study, the outstanding results of gamma-rays shielding properties of Phthalonitrile/WB composites (PHWB) obtained using MCNPX code and XCOM can be used for future experimental gamma-rays shielding approaches at a wide range of energy.
Keywords: Phthalonitrile, MCNPX, XCOM, radiation protection efficiency, gamma-rays.
Full-Text [PDF 2048 kb]   (775 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. Gong C, Tang X, Fatemi S, Yu H, Shao W, Shu D, et al. (2018) A Monte Carlo study of SPECT in boron neutron capture therapy for a heterogeneous human phantom. Int J Radiat Res, 16(1): 1-12.
2. Aghaz A, Faghihi R, Mortazavi SMJ, Haghparast A (2016) Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range. Int J Radiat Res, 14(2): 127-131. [DOI:10.18869/acadpub.ijrr.14.2.127]
3. Mahdavi M, Mahdavi SRM, Ataei G (2013) Dose enhancement effect of gold nanoparticles on MAGICA polymer gel in mega voltage radiation therapy. Int J Radiat Res, 11(1): 55-61.
4. Vagheian M, Sardari D, Saramad S, Ochbelagh DR (2020) Experimental and theoretical investigation into X-ray shielding properties of thin lead films. Int J Radiat Res, 18(2): 263-274.
5. Mehnati P, Arash M, Zakerhamidi MS, Ghavami M (2019) Designing and construction of breast shields using silicone composite of Bismuth for chest CT. Int J Radiat Res, 17(3): 499-504.
6. Acun H, Bozkurt A, Kemikler G (2017) Dosimetric investigation of high dose rate Ir-192 source with Monte Carlo method. Int J Radiat Res, 15(3): 241-249.
7. Ahbrizal T, Tengku F, Jubri Z, Rajab NF, Rahim KA, Anum Y, et al. (2013) Gelam honey protects against gamma-irradiation damage to antioxidant enzymes in human diploid fibroblasts. Molecules, 18(2): 2200-11. [DOI:10.3390/molecules18022200] [PMID] []
8. Tekin HO, Singh VP, Altunsoy EE, Manici T (2017) Mass attenuation coefficients of human body organs using MCNPX Monte Carlo code. Iran J Med Phys, 14(4): 229-40.
9. Choi Y, Park MH, Lee K (2019) Tissue engineering strategies for intervertebral disc treatment using functional polymers. Polymers (Basel), 11(5): 872. [DOI:10.3390/polym11050872] [PMID] []
10. Mortazavi SMJ, Kardan M, Sina S, Baharvand H, Sharafi N (2016) Design and fabrication of high density borated polyethylene nanocomposites as a neutron shield. Int J Radiat Res, 14(4): 379-383. [DOI:10.18869/acadpub.ijrr.14.4.379]
11. Zagho M, Abd E, Hussein E (2018) Recent overviews in functional polymer composites for biomedical applications. Polymers, 10(7): 739. [DOI:10.3390/polym10070739] [PMID] []
12. Akkurt I and Canakci H (2011) Radiation attenuation of boron doped clay for 662 , 1173 and 1332 keV gamma rays. Int J Radiat Res, 9(1): 37-40.
13. Fantidis JG (2015) The comparison between simple and advanced shielding materials for the shield of portable neutron sources. Int J Radiat Res, 13(4): 287-295.
14. Tekin HO and Manici T (2017) Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nucl Sci Tech, 95(09): 1-4. [DOI:10.1007/s41365-017-0253-4]
15. Kiani MA, Ahmadi SJ, Outokesh M, Adeli R (2019) Study on physico-mechanical and gamma-ray shielding characteristics of new ternary nanocomposites. Appl Radiat Isot, 143: 141-8. [DOI:10.1016/j.apradiso.2018.10.006] [PMID]
16. Derradji M, Wang J, Liu W (2016) High performance ceramic-based phthalonitrile micro and nanocomposites. Materials Letters, 2016(06): 110. [DOI:10.1016/j.matlet.2016.06.110]
17. Derradji M, Wang J, Liu WB (2018) Phthalonitrile resins and composites properties. Elsevier, Book 2018. 405 pages. [DOI:10.1016/B978-0-12-812966-1.00002-0]
18. Hanqi Zhang, Bing Wang YW and HZ (2020) Novolac/phenol-containing phthalonitrile blends: Curing characteristics and composite mechanical properties. Polymers (Basel), 12(126): 1-15. [DOI:10.3390/polym12010126] [PMID] []
19. Derradji M, Henniche A, Wang J, Dayo AQ, Ouyang J, Liu W, et al. (2018) High performance nanocomposites from Ti3SiC2 MAX phase and phthalonitrile resin. Polym Compos, 2018: 1-7. [DOI:10.1002/pc.24401]
20. Qadeer A, Cao X, Cai W, Song S, Wang J, Zegaoui A, et al. (2018) Synthesis of benzophenone-center bisphenol-A containing phthalonitrile monomer ( BBaph ) and its copolymerization with P-a benzoxazine. Reactive and Functional Polymers, 129(2017): 46-52. [DOI:10.1016/j.reactfunctpolym.2017.10.016]
21. Derradji M, Zegaoui A, Medjahed A, Dayo AQ, Wang J, Arse YB, et al. (2018) Cost effective surface-modified basalt fibers-reinforced phthalonitrile composites with improved mechanical properties and advanced nuclear shielding efficienc. Polym Compos, 40(S1): 1-8. [DOI:10.1002/pc.25085]
22. Qadeer A, Wang A, Derradji M, Kiran S, Zegaoui A (2018) Copolymerization of mono and difunctional benzoxazine monomers with bio-based phthalonitrile monomer : Curing behaviour , thermal , and mechanical properties. React Funct Polym, 131: 156-63. [DOI:10.1016/j.reactfunctpolym.2018.07.022]
23. Derradji M, Zegaoui A, Xu Y, Wang A, Qadeer A, Wang J, et al. (2018) Toward advanced gamma rays radiation resistance and shielding e ffi ciency with phthalonitrile resins and composites. [DOI:10.1016/j.nimb.2018.02.017]
24. Nuclear Instruments and Methods in Physics Research, 421: 13-7.
25. Medjahed A, Derradji M, Zegaoui A, Wu R, Li B (2019) Mechanical and gamma rays shielding properties of a novel fi ber-metal laminate based on a basalt/phthalonitrile composite and an Al-Li alloy. Compos Struct, 210: 421-9. [DOI:10.1016/j.compstruct.2018.11.037]
26. Liang Y, Yuan X, Zhang W (2011) Thermodynamic identification of tungsten borides. Phys Rev B, 83: 220101(R). [DOI:10.1103/PhysRevB.83.220102]
27. Li Q, Zhou D, Zheng W, Ma Y, Chen C (2013) Global structural optimization of tungsten borides. Phys Rev Lett, 110(136403): 1-5. [DOI:10.1103/PhysRevLett.110.136403] [PMID]
28. Demir E, Karabas M, Sonmez S, Tugrul AB, Ovecoglu ML, Buyuk B (2017) Comparison of radiation properties of tungsten and additive metal coatings on 321 stainless steel substrate. Acta Physica Polonica Series a, 131(1): 71-73. [DOI:10.12693/APhysPolA.131.71]
29. Chen Y, He D, Qin J, Kou Z, Wang S, Wang J (2010) Ultrahieh-pressure densification of nanocrystalline WB ceramics. J Mater Res, 25(4): 637-40. [DOI:10.1557/JMR.2010.0082]
30. Teng M, Pinwen Z, xiaohui Y (2021) Progress in functional studies of transition metal borides. Chinese Phys B, 30(10): 25. [DOI:10.1088/1674-1056/ac1925]
31. Singh VP, Shirmardi SP, Medhat M, Badiger NM (2015) Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum, 119: 1-5. [DOI:10.1016/j.vacuum.2015.06.006]
32. Brown FB and Mosteller RD (2004) MCNP5 workshop-PHYSOR-2004. American Nucler Society, 137 p.
33. Gimm JH and Hubbell MJ (1987) BXCOM: Photon cross sections on a personal computer, U.S Department of commerce. Center for Radiation Research National Bureau of Standards Gaithersburg, MD 20899 Available from:http://physics.nist.gov/xcom. Issued June 1978, p. 32.
34. Orz PEML, Ag B, Owae FRKT, Ag B, Nke WAE, Ag B, et al. (2012) Phthalic Acid and Derivatives. In: Ullmann's Encyclopedia of Industrial Chemistry, p. 131-79.
35. Biswas R, Sahadath H, Sattar A, Huq MF (2016) Calculation of gamma-ray attenuation parameters for locally developed shielding material: Polyboron. J Radiat Res Appl Sci, 9(1): 26-34. [DOI:10.1016/j.jrras.2015.08.005]
36. Pelowitz DB (2011) MCNPX (TM) USER ' S MANUAL. Scientific Research, p. 1-645.
37. Alavian H and Tavakoli-anbaran H (2019) Study on gamma shielding polymer composites reinforced with different sizes and proportions of tungsten particles using MCNP code. Prog Nucl Energy, 115: 91-8. [DOI:10.1016/j.pnucene.2019.03.033]
38. Dong Y, Chang S-Q, Zhang H-X, Chao R, Bin K, Dai M-Z, Dai Y-D (2012) Effects of WO3 particle size in WO3/Epoxy resin radiation radiation shielding material. Chinese Phys Lett, 29(10): 1-4. [DOI:10.1088/0256-307X/29/10/108102]
39. Malekie S and Hajiloo N (2017) Comparative study of micro and nano size WO3/E44 epoxy composite as gamma radiation shielding using MCNP and experiment. Chinese Physics Letters, 34(10): 1-9. [DOI:10.1088/0256-307X/34/10/108102]
40. Chrzanowska J, Kurpaska L, Hoffman J (2016) Fabrication and characterization of superhard tungsten boride layers deposited by radio frequency magnetron sputtering Article. Ceram Int, 42(10): 12221-12230. [DOI:10.1016/j.ceramint.2016.04.166]
41. Pan J, Zhen C, Wang L, Liu G, Cheng H (2017) WB crystals with oxidized surface as counter electrode in dye-sensitized solar cells. Sci Bull, 62(2): 114-8. [DOI:10.1016/j.scib.2017.01.005] [PMID]
42. Kvashnin AG, Zakaryan H, Zhao C, Duan Y (2018) New tungsten borides , their stability and outstanding mechanical properties. J Phys Chem Lett, 12: 3470-3477. [DOI:10.1021/acs.jpclett.8b01262] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Al Hassan M, Liu W, Wang J, Ali M, Rawashdeh A. Monte Carlo simulations of gamma-rays shielding with phthalonitrile - tungsten borides composites. Int J Radiat Res 2022; 20 (3) :621-626
URL: http://ijrr.com/article-1-4349-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 3 (7-2022) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4652