[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 4 (10-2023) ::
Int J Radiat Res 2023, 21(4): 663-673 Back to browse issues page
Implementation of geant4 application for tomography emission Monte Carlo Code in the calculation of dose distribution in external radiation therapy
A.B. Yeke Dehghan , A. Mostaar , P. Azadeh
Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran , mostaar@sbmu.ac.ir
Abstract:   (692 Views)
Background: The "Geant4 Application for Tomography Emission" (GATE) toolkit comprises advanced open-source Monte Carlo (MC) code for use in ‎medical imaging and radiotherapy simulations. This study aimed to verify the GATE toolkit results against a water phantom and then to show the dose calculation capabilities of the GATE for radiotherapy. The results were compared with three dose calculation algorithms using patients' Computerized Tomography (CT) data.‎ Materials and Methods: A Linac with a 6 MV photon beam was simulated in the GATE code. The ‎code was verified, head CT images of three patients were inserted into the GATE as realistic ‎phantoms‎, and simulations were performed for different field sizes and angles. The Percent ‎Depth Doses (PDDs) and transverse profiles were extracted from the GATE simulation and ‎calculation ‎algorithms. Their results were ‎compared regarding the Dose Difference (DD) and gamma index for the PDDs and the Full Width at Half Maximum (FWHM) for the profiles. ‎Results: Using the patient CT data for the PDDs, the ‎gamma pass rate with 3%/3 mm criteria in the comparison between the GATE ‎simulation and ‎algorithms for all fields ranged from 89.4% to ‎‎98.8%, with an average of 92.8%. The ‎extracted FWHMs from the GATE and algorithms were in good agreement, and their differences ranged from 0.1 to 1.2 mm. Conclusions: The GATE MC toolkit has good potential for implementation in radiotherapy Treatment Planning Systems (TPS) for dose calculations.
Keywords: GATE, geant4, Monte Carlo Code, photon beam.
Full-Text [PDF 1557 kb]   (429 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Sarrut D, Bardiès M, Boussion N, et al. (2014) A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys, 41(6): 064301. [DOI:10.1118/1.4871617] [PMID]
2. Papadimitroulas P (2017) Dosimetry applications in GATE Monte Carlo toolkit. Phys Med, 41: 136-140. [DOI:10.1016/j.ejmp.2017.02.005] [PMID]
3. Slimani FAA, Hamdi M, Bentourkia MH (2018) G4DARI: Geant4/GATE based Monte Carlo simulation interface for dosimetry calculation in radiotherapy. Comput Med Imaging Graph, 67: 30-39. [DOI:10.1016/j.compmedimag.2018.04.008] [PMID]
4. Krieger T and Sauer OA (2005) Monte Carlo-versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol, 50(5): 859-68. [DOI:10.1088/0031-9155/50/5/010] [PMID]
5. Zaman A, Kakakhel MB, Hussain A (2019) A comparison of Monte Carlo, anisotropic analytical algorithm (AAA) and Acuros XB algorithms in assessing dosimetric perturbations during enhanced dynamic wedged radiotherapy deliveries in heterogeneous media. J Radiother Pract, 18(1): 75-81. [DOI:10.1017/S1460396918000262]
6. Lee B, Jeong S, Chung K, et al. (2019) Feasibility of a GATE Monte Carlo platform in a clinical pretreatment QA system for VMAT treatment plans using TrueBeam with an HD120 multileaf collimator. J Appl Clin Med Phys, 20(10): 101-10. [DOI:10.1002/acm2.12718] [PMID] []
7. Nahum AE (1999) Condensed-history Monte-Carlo simulation for charged particles: what can it do for us? Radiat Environ Biophys, 38(3): 163-173. [DOI:10.1007/s004110050152] [PMID]
8. Andreo P (1991) Monte Carlo techniques in medical radiation physics. Phys Med Biol, 36(7): 861. [DOI:10.1088/0031-9155/36/7/001] [PMID]
9. Nahum A (2007) Monte-Carlo based patient dose computation. Handbook of Radiotherapy Physics: Theory and Practice. Taylor & Francis, Inglaterra. [DOI:10.1201/9781420012026.ch28]
10. Mostaar A, Alahverdi M, Shahriari M (2003) Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom. Int J Radiat Res, 1: 143-149.
11. Elcim Y, Dirican B, Yavas O (2018) Dosimetric comparison of pencil beam and Monte Carlo algorithms in conformal lung radiotherapy. J Appl Clin Med Phys, 199(5): 616-624. [DOI:10.1002/acm2.12426] [PMID] []
12. Thiam C O, Breton V, Donnarieix D, et al. (2008) Validation of a dose deposited by low-energy photons using GATE/GEANT4. Phys Med Biol, 53(11): 3039-55. [DOI:10.1088/0031-9155/53/11/019] [PMID]
13. Visvikisa D, Bardiesb M, Chiavassab S, et al. (2006) Use of the GATE Monte Carlo package for dosimetry applications. Nucl, 569(2): 335-340. [DOI:10.1016/j.nima.2006.08.049]
14. Brualla L, Rodriguez M, Lallena AM (2017) Monte Carlo systems used for treatment planning and dose verification. Strahlenther Onkol, 193(4): 243-259. [DOI:10.1007/s00066-016-1075-8] [PMID]
15. Byrnes K, Ford A, Bennie N (2019) Verification of the Elekta Monaco TPS Monte Carlo in modelling radiation transmission through metals in a water equivalent phantom. Phys Eng Sci Med, 42(2): 639-45. [DOI:10.1007/s13246-019-00749-2] [PMID]
16. Santin G, Strul D, Lazaro D, et al. (2003) GATE: A Geant4-based simulation platform for PET and SPECT integrating movement and time management. IEEE Trans Nucl Sci, 50(5): 1516-1521. [DOI:10.1109/TNS.2003.817974]
17. Jan S, Santin G, Strul D, et al. (2004) GATE: a simulation toolkit for PET and SPECT. Phys Med Biol, 49(19): 4543-61. [DOI:10.1088/0031-9155/49/19/007] [PMID] []
18. Abolaban FA and Taha EM (2020) Representation and illustration of the initial parameters in GATE 8.1 Monte Carlo simulation of an Elekta Versa-HD linear accelerator. J Radiat Res Appl Sc, 13(1): 642-7. [DOI:10.1080/16878507.2020.1820271]
19. Grevillot L, Frisson T, Maneval D, et al. (2011) Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4. Phys Med Biol, 56(4): 903-18. [DOI:10.1088/0031-9155/56/4/002] [PMID]
20. Jan S, Benoit D, Becheva E, et al. (2011) GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol, 56(4): 881-901. [DOI:10.1088/0031-9155/56/4/001] [PMID]
21. GATE (2017) GATE User's Guide Version: GATE 8.0. OpenGATE Collaboration http://www.opengatecollaboration.org/UsersGuide; March 2017
22. Shalek RJ (1977) Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures. Med Phys, 4(5): 461. [DOI:10.1118/1.594356]
23. Hasenbalg F, Neuenschwander H, Mini R, Born EJ (2007) Collapsed cone convolution and analytical anisotropic algorithm dose calculations compared to VMC++ Monte Carlo simulations in clinical cases. Phys Med Biol, 52(13): 3679- 369. [DOI:10.1088/0031-9155/52/13/002] [PMID]
24. Reis QM, Nicolucci P, Fortes SS, Silva LP (2019) Effects of heterogeneities in dose distributions under nonreference conditions: Monte Carlo simulation vs dose calculation algorithms. Med Dosim, 44(1): 74-82. [DOI:10.1016/j.meddos.2018.02.009] [PMID]
25. Najafzadeh M, Nickfarjam A, Jabbari K, et al. (2019) Dosimetric verification of lung phantom calculated by collapsed cone convolution: A Monte Carlo and experimental evaluation. J Xray Sci Technol, 27(1): 161-175. [DOI:10.3233/XST-180425] [PMID]
26. Yavuzkanat N and Kürem HBS (2020) Monte Carlo Simulation of the Gamma-Ray Transmissions for the newly Designed Shielding Blocks used in Radiotherapy. J Adv Res, 6(2): 364-77. https://doi.org/10.28979/jarnas.844955 [DOI:10.28979/comufbed.753299]
27. Aspradakis MM (1997) A study to assess and improve dose computations in photon beam therapy. Med Phys, 24(8): 1334-1334. [DOI:10.1118/1.598090]
28. Sauer OA (1995) Calculation of dose distributions in the vicinity of High‐Z interfaces for photon beams. Med Phys 22(10): 1685-1690. [DOI:10.1118/1.597433] [PMID]
29. Han T, Mikell J K, Salehpour M, Mourtada F (2011) Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model‐based convolution methods in heterogeneous media. Med Phy, 38(5): 2651-2664. [DOI:10.1118/1.3582690] [PMID] []
30. Chow J C, Leung M K, Van Dyk J (2009) Variations of lung density and geometry on inhomogeneity correction algorithms: A Monte Carlo dosimetric evaluation. Med Phys, 36(8): 3619-3630. [DOI:10.1118/1.3168966] [PMID]
31. Fogliata A, Vanetti E, Albers D, et al. (2007) On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol, 52(5): 1363- 1385. [DOI:10.1088/0031-9155/52/5/011] [PMID]
32. Schneider W, Bortfeld T, Schlegel W (2000) Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol, 45(2): 459-78. [DOI:10.1088/0031-9155/45/2/314] [PMID]
33. Vanderstraeten B, Chin PW, Fix M, et al. (2007) Conversion of CT numbers into tissue parameters for Monte Carlo dose calculations: a multi-centre study. Phys Med Biol, 52(3): 539-62. [DOI:10.1088/0031-9155/52/3/001] [PMID]
34. Kawrakow I and Walters B (2006) Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc. Med Phys, 33(8): 3046-3056. [DOI:10.1118/1.2219778] [PMID]
35. Benhalouche S, Visvikis D, Le Maitre A, et al. (2013) Evaluation of clinical IMRT treatment planning using the GATE Monte Carlo simulation platform for absolute and relative dose calculations. Med phys, 40(2): 021711. [DOI:10.1118/1.4774358] [PMID]
36. Seroul P, Sarrut D (2008) VV: a viewer for the evaluation of 4D image registration, presented at Medical Image Computing and Computer-Assisted Intervention MICCAI Workshop [DOI:10.54294/hfoogp]
37. Palmans H, Andreo P, Huq MS, et al. (2017) Dosimetry of small static fields used in external beam radiotherapy: an IAEA-AAPM international code of practice for reference and relative dose determination. Med Phys 45(11): e1123-e45. [DOI:10.1002/mp.13208]
38. Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys, 25(5): 656-661. [DOI:10.1118/1.598248] [PMID]
39. Hussein M, Clark C, Nisbet A (2017) Challenges in calculation of the gamma index in radiotherapy-towards good practice. Phys Med, 36: 1-11. [DOI:10.1016/j.ejmp.2017.03.001] [PMID]
40. Williams T, Kelley C Gnuplot software (ver 4.4.3). Web access (preferred): https://sourceforge.net/projects/gnuplot
41. Venselaar J, Welleweerd H, Mijnheer B (2001) Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol, 60(2): 191-201. [DOI:10.1016/S0167-8140(01)00377-2]
42. Mesbahi A, Reilly A J, Thwaites D I (2006) Development and commissioning of a Monte Carlo photon beam model for Varian Clinac 2100EX linear accelerator. Appl Radiat Isot, 64(6): 656-662. [DOI:10.1016/j.apradiso.2005.12.012] [PMID]
43. Gershkevitsh E, Schmidt R, Velez G, et al. (2008) Dosimetric verification of radiotherapy treatment planning systems: Results of IAEA pilot study. Radiother Oncol, 89(3): 338-346. [DOI:10.1016/j.radonc.2008.07.007] [PMID]
44. Knöös T, Wieslander E, Cozzi L, et al. (2006) Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol, 51(22): 5785- 807. [DOI:10.1088/0031-9155/51/22/005] [PMID]
45. Tai DT, Oanh LT, Son ND, et al. (2019) Dosimetric and Monte Carlo verification of jaws-only IMRT plans calculated by the Collapsed Cone Convolution algorithm for head and neck cancers. Rep Pract Oncol, 24(1): 105-114. [DOI:10.1016/j.rpor.2018.11.004] [PMID] []
46. Chopra KL, Leo P, Kabat Ch, et al. (2018) Evaluation of dose calculation accuracy of treatment planning systems in the presence of tissue heterogeneities. Ther Radiol Oncol, 2: 28. [DOI:10.21037/tro.2018.07.01]
47. Stathakis S, Esquivel C, Vazquez Quino L, et al. (2012) Accuracy of the small field dosimetry using the Acuros XB dose calculation algorithm within and beyond heterogeneous media for 6 MV photon beams. Int J Med Phys Clin Eng Radiat Oncol, 1: 78-87. [DOI:10.4236/ijmpcero.2012.13011]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yeke Dehghan A, Mostaar A, Azadeh P. Implementation of geant4 application for tomography emission Monte Carlo Code in the calculation of dose distribution in external radiation therapy. Int J Radiat Res 2023; 21 (4) :663-673
URL: http://ijrr.com/article-1-5022-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 4 (10-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4642