1. Jong WL, Ung NM, Tiong AH, et al. (2018) Characterisation of a MOSFET-based detector for dose measurement under megavoltage electron beam radiotherapy. Radiat Phys Chem, 144: 76-84. [ DOI:10.1016/j.radphyschem.2017.11.021] 2. Kokurewicz K, Brunetti E, Curcio A, et al. (2021) An experimental study of focused very high energy electron beams for radiotherapy. Commun Phys, 4(1): 1-7. [ DOI:10.1038/s42005-021-00536-0] 3. Labuś W, Kitala D, Klama-Baryla A, et al. (2022) Influence of electron beam irradiation on extracellular matrix of the human allogeneic skin grafts. J Biomed Mater Res B Appl Biomater, 110(3): 547-563. [ DOI:10.1002/jbm.b.34934] [ PMID] 4. Soejoko DS and Adi RW (2007) The influence of oblique incidence electron beams to beam specification parameters. World Congress on Medical Physics and Biomedical Engineering 2006, p. 1948-1951. 5. Chamberland E, Beaulieu L, Lachance B (2015) Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning. J Appl Clin Med Phys, 16(3): 60-79. [ DOI:10.1120/jacmp.v16i3.4636] [ PMID] [ ] 6. Hollmark M, Gudowska I, Belkić D, et al. (2008) An analytical model for light ion pencil beam dose distributions: multiple scattering of primary and secondary ions. Phys Med Biol, 53(13): 3477-3491. [ DOI:10.1088/0031-9155/53/13/005] [ PMID] 7. Brown FB, Barrett RF, Booth TE, et al. (2002) MCNP version 5. Trans Am Nucl Soc, 87(273): 02-3935. 8. Kawrakow I and Rogers DWO (2000) The EGSnrc code system. NRC Rep PIRS-701 NRC Ott. 17. 9. Rodriguez M, Sempau J, Brualla L (2013) PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlentherapie und Onkologie, 189(10): 881-6. [ DOI:10.1007/s00066-013-0415-1] [ PMID] 10. Sempau J, Badal A, Brualla L (2011) A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. Med Phys, 38(11): 5887-5895. [ DOI:10.1118/1.3643029] [ PMID] 11. Şahmaran T and Kaşkaş A (2022) Comparisons of various water-equivalent materials with water phantom using the Geant4/GATE simulation program. Int J Radiat Res, 20(3): 709-714. 12. Egashira Y, Nishio T, Hotta K, et al. (2013) Application of the pencil-beam redefinition algorithm in heterogeneous media for proton beam therapy. Phys Med Biol, 58(4): 1169-84. [ DOI:10.1088/0031-9155/58/4/1169] [ PMID] 13. Zhang H, Li Q, Liu X, et al. (2022) Validation and testing of a novel pencil-beam model derived from Monte Carlo simulations in carbon-ion treatment planning for different scenarios. Phys Med, 99: 1-9. [ DOI:10.1016/j.ejmp.2022.04.018] [ PMID] 14. Al Hassan M, Liu WB, Wang J, et al. (2011) Monte Carlo simulations of gamma-rays shielding with phthalonitrile-tungsten borides composites. Int J Radiat Res, 20(3): 621-626. 15. Huang JY, Dunkerley D, Smilowitz JB (2019) Evaluation of a commercial Monte Carlo dose calculation algorithm for electron treatment planning. J Appl Clin Med Phys, 20(6): 184-193. [ DOI:10.1002/acm2.12622] [ PMID] [ ] 16. Shimozato T and Okudaira K (2017) Dose distributions in simulated electron radiotherapy with intraoral cones using treatment planning system. Int J Med Phys Clin Eng Radiat Oncol, 6(03): 280-289. [ DOI:10.4236/ijmpcero.2017.63025] 17. Kholghi N, Pouladian M, Monfared AS (2022) Evaluating the accuracy of electron pencil beam dosimetry based on Monte Carlo simulations using homogeneous and heterogeneous phantoms. Inform Med Unlocked, 31:101006. [ DOI:10.1016/j.imu.2022.101006] 18. Hogstrom KR, Mills MD, Almond PR (1981) Electron beam dose calculations. Phys Med Biol, 26(3): 445-59. [ DOI:10.1088/0031-9155/26/3/008] [ PMID] 19. Chi PCM, Hogstrom KR, Starkschall G, et al. (2006) Application of the electron pencil beam redefinition algorithm to electron arc therapy. Med Phys, 33(7-1): 2369-2383. [ DOI:10.1118/1.2207215] [ PMID] 20. Khan FM, Sperduto PW, Gibbons JP (2021) Khan's treatment planning in radiation oncology: Lippincott Williams & Wilkins. 21. Ding GX, Cygler JE, Christine WY, et al. (2005) A comparison of electron beam dose calculation accuracy between treatment planning systems using either a pencil beam or a Monte Carlo algorithm. Int J Radiat Oncol Biol Phys, 63(2): 622-633. [ DOI:10.1016/j.ijrobp.2005.06.016] [ PMID] 22. dos Reis Gonçalves F, Vianello E, Viegas C, Viamonte A (2020) Dosimetric evaluation of electron beam Monte Carlo isodoses distribution based on thermoluminescent dosimetry. Braz J Radiat Sci, 8(1): 1-18. [ DOI:10.15392/bjrs.v8i1.1108] 23. Krieger T and Sauer OA (2005) Monte Carlo-versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol, 50(5): 859-868. [ DOI:10.1088/0031-9155/50/5/010] [ PMID] 24. Samuelsson A, Hyödynmaa S, Johansson KA (1998) Dose accuracy check of the 3D electron beam algorithm in a treatment planning system. Phys Med Biol, 43(6): 1529. [ DOI:10.1088/0031-9155/43/6/012] [ PMID] 25. Ulmer W and Harder D (2005) A triple Gaussian pencil beam model for photon beam treatment planning. Z Für Med Phys, 5(1): 25-30. [ DOI:10.1016/S0939-3889(15)70758-0] 26. Klein EE, Hanley J, Bayouth J, et al. (2009) Task Group 142 report: Quality assurance of medical accelerators a. Med Phys, 36(9-1): 4197-4212. [ DOI:10.1118/1.3190392] [ PMID]
|