[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 4 (10-2023) ::
Int J Radiat Res 2023, 21(4): 789-795 Back to browse issues page
Modification of binomial lateral spreading function for oblique electron beams in pencil beam algorithm based on Monte Carlo simulations
N. Kholghi , M. Pouladian , A. Shabestani Monfared
Department of Biomedical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran , pouladian@srbiau.ac.ir
Abstract:   (998 Views)
Background: The present study aimed to evaluate the accuracy of the pencil beam algorithm (PBA) dose calculations with modified binomial lateral spreading function for oblique electron beams compared with Monte Carlo simulations (MCs), as a standard method. Materials and Methods: The oblique pencil beams were simulated using MC code, and lateral dose distributions of oblique (10 and 12 MeV) electron beams were calculated in homogeneous water and heterogeneous slab phantoms (different materials of paraffin, carbon, and RW3). The MC dose calculations were used to modify the parameters of the binomial Gaussian lateral spreading function of PBA. The dose profiles of oblique electron beams were calculated by modified PBA and compared with MCs in both phantoms using gamma analysis with a 2% dose difference (DD) and 2 mm distance to agreement (DTA) constraints. Results: The average difference in dose profiles between PBA and MC calculations was 0.88% and 0.76% for water and slab phantoms, respectively. The mean gamma pass rate was 97.4% and 97.8% for water and slab phantoms, respectively. The gamma pass rates were above 95%, except for the dose profile of the water phantom irradiated with 10 MeV at a depth of 1 cm. Conclusion: The modified PBA dose calculation results showed an excellent agreement with MCs in the two phantoms irradiated with oblique 10 MeV and 12 MeV electron beams. Our approach of modifying the PBA can be used for other charged particle dosimetry and clinical applications, especially electron and proton dosimetry.
Keywords: Pencil beam, Monte Carlo, oblique beams, binominal gaussian function, lateral spreading parameter.
Full-Text [PDF 1251 kb]   (688 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Jong WL, Ung NM, Tiong AH, et al. (2018) Characterisation of a MOSFET-based detector for dose measurement under megavoltage electron beam radiotherapy. Radiat Phys Chem, 144: 76-84. [DOI:10.1016/j.radphyschem.2017.11.021]
2. Kokurewicz K, Brunetti E, Curcio A, et al. (2021) An experimental study of focused very high energy electron beams for radiotherapy. Commun Phys, 4(1): 1-7. [DOI:10.1038/s42005-021-00536-0]
3. Labuś W, Kitala D, Klama-Baryla A, et al. (2022) Influence of electron beam irradiation on extracellular matrix of the human allogeneic skin grafts. J Biomed Mater Res B Appl Biomater, 110(3): 547-563. [DOI:10.1002/jbm.b.34934] [PMID]
4. Soejoko DS and Adi RW (2007) The influence of oblique incidence electron beams to beam specification parameters. World Congress on Medical Physics and Biomedical Engineering 2006, p. 1948-1951.
5. Chamberland E, Beaulieu L, Lachance B (2015) Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning. J Appl Clin Med Phys, 16(3): 60-79. [DOI:10.1120/jacmp.v16i3.4636] [PMID] []
6. Hollmark M, Gudowska I, Belkić D, et al. (2008) An analytical model for light ion pencil beam dose distributions: multiple scattering of primary and secondary ions. Phys Med Biol, 53(13): 3477-3491. [DOI:10.1088/0031-9155/53/13/005] [PMID]
7. Brown FB, Barrett RF, Booth TE, et al. (2002) MCNP version 5. Trans Am Nucl Soc, 87(273): 02-3935.
8. Kawrakow I and Rogers DWO (2000) The EGSnrc code system. NRC Rep PIRS-701 NRC Ott. 17.
9. Rodriguez M, Sempau J, Brualla L (2013) PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlentherapie und Onkologie, 189(10): 881-6. [DOI:10.1007/s00066-013-0415-1] [PMID]
10. Sempau J, Badal A, Brualla L (2011) A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. Med Phys, 38(11): 5887-5895. [DOI:10.1118/1.3643029] [PMID]
11. Şahmaran T and Kaşkaş A (2022) Comparisons of various water-equivalent materials with water phantom using the Geant4/GATE simulation program. Int J Radiat Res, 20(3): 709-714.
12. Egashira Y, Nishio T, Hotta K, et al. (2013) Application of the pencil-beam redefinition algorithm in heterogeneous media for proton beam therapy. Phys Med Biol, 58(4): 1169-84. [DOI:10.1088/0031-9155/58/4/1169] [PMID]
13. Zhang H, Li Q, Liu X, et al. (2022) Validation and testing of a novel pencil-beam model derived from Monte Carlo simulations in carbon-ion treatment planning for different scenarios. Phys Med, 99: 1-9. [DOI:10.1016/j.ejmp.2022.04.018] [PMID]
14. Al Hassan M, Liu WB, Wang J, et al. (2011) Monte Carlo simulations of gamma-rays shielding with phthalonitrile-tungsten borides composites. Int J Radiat Res, 20(3): 621-626.
15. Huang JY, Dunkerley D, Smilowitz JB (2019) Evaluation of a commercial Monte Carlo dose calculation algorithm for electron treatment planning. J Appl Clin Med Phys, 20(6): 184-193. [DOI:10.1002/acm2.12622] [PMID] []
16. Shimozato T and Okudaira K (2017) Dose distributions in simulated electron radiotherapy with intraoral cones using treatment planning system. Int J Med Phys Clin Eng Radiat Oncol, 6(03): 280-289. [DOI:10.4236/ijmpcero.2017.63025]
17. Kholghi N, Pouladian M, Monfared AS (2022) Evaluating the accuracy of electron pencil beam dosimetry based on Monte Carlo simulations using homogeneous and heterogeneous phantoms. Inform Med Unlocked, 31:101006. [DOI:10.1016/j.imu.2022.101006]
18. Hogstrom KR, Mills MD, Almond PR (1981) Electron beam dose calculations. Phys Med Biol, 26(3): 445-59. [DOI:10.1088/0031-9155/26/3/008] [PMID]
19. Chi PCM, Hogstrom KR, Starkschall G, et al. (2006) Application of the electron pencil beam redefinition algorithm to electron arc therapy. Med Phys, 33(7-1): 2369-2383. [DOI:10.1118/1.2207215] [PMID]
20. Khan FM, Sperduto PW, Gibbons JP (2021) Khan's treatment planning in radiation oncology: Lippincott Williams & Wilkins.
21. Ding GX, Cygler JE, Christine WY, et al. (2005) A comparison of electron beam dose calculation accuracy between treatment planning systems using either a pencil beam or a Monte Carlo algorithm. Int J Radiat Oncol Biol Phys, 63(2): 622-633. [DOI:10.1016/j.ijrobp.2005.06.016] [PMID]
22. dos Reis Gonçalves F, Vianello E, Viegas C, Viamonte A (2020) Dosimetric evaluation of electron beam Monte Carlo isodoses distribution based on thermoluminescent dosimetry. Braz J Radiat Sci, 8(1): 1-18. [DOI:10.15392/bjrs.v8i1.1108]
23. Krieger T and Sauer OA (2005) Monte Carlo-versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol, 50(5): 859-868. [DOI:10.1088/0031-9155/50/5/010] [PMID]
24. Samuelsson A, Hyödynmaa S, Johansson KA (1998) Dose accuracy check of the 3D electron beam algorithm in a treatment planning system. Phys Med Biol, 43(6): 1529. [DOI:10.1088/0031-9155/43/6/012] [PMID]
25. Ulmer W and Harder D (2005) A triple Gaussian pencil beam model for photon beam treatment planning. Z Für Med Phys, 5(1): 25-30. [DOI:10.1016/S0939-3889(15)70758-0]
26. Klein EE, Hanley J, Bayouth J, et al. (2009) Task Group 142 report: Quality assurance of medical accelerators a. Med Phys, 36(9-1): 4197-4212. [DOI:10.1118/1.3190392] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kholghi N, Pouladian M, Shabestani Monfared A. Modification of binomial lateral spreading function for oblique electron beams in pencil beam algorithm based on Monte Carlo simulations. Int J Radiat Res 2023; 21 (4) :789-795
URL: http://ijrr.com/article-1-5084-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 4 (10-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 48 queries by YEKTAWEB 4710