[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 2 (4-2024) ::
Int J Radiat Res 2024, 22(2): 329-338 Back to browse issues page
Effect of Wi-Fi exposure and edible bird nest supplementation on the testicular oxidative stress status and sperm quality in male Sprague-Dawley rat pups
F.H.F. Jaffar , K. Osman , C.K. Hui , A.F. Zulkefli , S.F. Ibrahim
Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia , timi@ukm.edu.my
Abstract:   (359 Views)
Background: Wireless Fidelity (Wi-Fi) exposure might induce tissue damage through non-thermal effects. Nonetheless, only a few studies have evaluated the non-thermal effects on the testis undergoing reproductive development following Wi-Fi exposure. This study aimed to assess the oxidative stress status in the testis and subsequent sperm quality of growing rat pups that received edible bird nest (EBN) supplementation simultaneously. Materials and Methods: Fourteen weeks of 2. 45GHz Wi-Fi exposure and simultaneous 250mg/kg EBN were supplemented to three-week-old male Sprague–Dawley rats. Thirty animals were divided equally into control, control EBN, Wi-Fi, sham Wi-Fi, and Wi-Fi+EBN. Results: Results showed an increase in total oxidant status (TOS), a significant decrease in total antioxidant status (TAS), and a significant increase in the expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the testis of the Wi-Fi group. Sperm chromatin integrity, morphology, concentration, and motility were among the parameters that significantly decreased. Supplementation of 250mg/kg EBN in the Wi-Fi+EBN group significantly reduced TOS and 8-OHdG expression in the testis. EBN supplementation also significantly increased sperm chromatin integrity, morphology, and concentration. Conclusion: Wi-Fi exposure induces oxidative stress in the testis and affects important sperm parameters in rat pups. EBN supplementation quenched the oxidative stress activity due to Wi-Fi exposure and improved sperm quality.
Keywords: IMRT, OARs, TPS, DVH, mixed energy plans.
Full-Text [PDF 950 kb]   (111 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Sun W, Lee O, Shin Y, et al. (2014) Wi-Fi could be much more. IEEE Commun Mag, 52:22-29. [DOI:10.1109/MCOM.2014.6957139]
2. Kesari KK, Agarwal A, Henkel R (2018) Radiations and male fertility. Reprod Biol Endocrinol, 16:118. [DOI:10.1186/s12958-018-0431-1]
3. Jaffar FHF, Osman K, Hui CK, et al. (2019) Adverse Effects of Wi-Fi Radiation on Male Reproductive System: A Systematic Review. Tohoku J Exp Med, 248:169-179. [DOI:10.1620/tjem.248.169]
4. Aldahhan RA and Stanton PG (2021) Heat stress response of somatic cells in the testis. Mol Cell Endocrinol, 527:111216. [DOI:10.1016/j.mce.2021.111216]
5. Jaffar FHF, Osman K, Hui CK, Zulkefli AF, Ibrahim SF (2022) Long-Term Wi-Fi Exposure from Pre-Pubertal to Adult Age on the Spermatogonia Proliferation and Protective Effects of Edible Bird's Nest Supplementation. Front Physiol, 13:1-11. [DOI:10.3389/fphys.2022.828578]
6. Feng CW, Bowles J, Koopman P (2014) Control of mammalian germ cell entry into meiosis. Mol Cell Endocrinol, 382:488-497. [DOI:10.1016/j.mce.2013.09.026]
7. Shahin S, Mishra V, Singh SP, Chaturvedi CM (2014) 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress. Free Radic Res, 48:511-525. [DOI:10.3109/10715762.2014.888717]
8. Saygin M, Asci H, Ozmen O, et al. (2016) Impact of 2.45GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: the role of gallic acid. Environ Toxicol, 31: 1771-1784. [DOI:10.1002/tox.22179]
9. Atasoy HI, Gunal MY, Atasoy P, et al. (2019) Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices. J Pediatr Urol, 9:223-229. [DOI:10.1016/j.jpurol.2012.02.015]
10. Kovačić Petrović Z, Peraica T, Kozarić-Kovačić D, Palavra IR (2022) Internet use and internet-based addictive behaviours during coronavirus pandemic. Curr Opin Psychiatry, 35:324-331. [DOI:10.1097/YCO.0000000000000804]
11. Quek MC, Chin NL, Yusof YA, et al. (2018) Characterization of edible bird's nest of different production, species and geographical origins using nutritional composition, physicochemical properties and antioxidant activities. Food Res Int, 109:35-43. [DOI:10.1016/j.foodres.2018.03.078]
12. Wang CY, Cheng LJ, Shen B, et al. (2019) Antihypertensive and Antioxidant Properties of Sialic Acid, the Major Component of Edible Bird's Nests. Curr Top Nutraceutical Res, 17:376-379. [DOI:10.37290/ctnr2641-452X.17:376-379]
13. Kuntjoro S and Rachmadiarti F (2020) Preference swiftlet bird (Aerodramus fuciphagus) nesting at different sites in an effort to in-crease nest production. J Phys: Conf Ser, 1569:1-6. [DOI:10.1088/1742-6596/1569/4/042083]
14. Thorburn C (2014) The edible birds' nest boom in Indonesia and South-east Asia: a nested political ecology. Food Cult Soc, 17:535-553. [DOI:10.2752/175174414X14006746101439]
15. Saygin M, Asci H, Ozmen O, et al. (2015) Impact of 2.45 GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: The role of gallic acid. Environ Toxicol, 31: 1771-1784. [DOI:10.1002/tox.22179]
16. Ding SS, Sun P, Zhang Z, et al. (2018) Moderate dose of trolox preventing the deleterious effects of Wi-Fi radiation on spermatozoa in vitro through reduction of oxidative stress damage. Chin Med J, 131:402-412. [DOI:10.4103/0366-6999.225045]
17. Jamshid M and Bahram P (2018) Effect of hydroalcoholic extract of nasturtium officinalis on oxidative and antioxidant indices caused by electromagnetic radiation emitted from wi-fi routers. J Fundam Appl Sci, 10: 464-474.
18. Jaffar FHF, Osman K, Hui CK, et al. (2021) Edible bird's nest supplementation improves male reproductive parameters of sprague dawley rat. Front Pharmacol, 12:1-6. [DOI:10.3389/fphar.2021.631402]
19. Koksal M, Oğuz E, Baba F, et al. (2012) Effects of melatonin on testis histology, oxidative stress and spermatogenesis after experimental testis ischemia-reperfusion in rats. Eur Rev Med Pharmacol Sci, 16:582-588.
20. Kim MJ, Kwon MJ, Kang HS, et al. (2018) Identification of Phosphohistone H3 cut off values corresponding to original WHO grades but distinguishable in well-differentiated gastrointestinal neuroendocrine tumors. Biomed Res Int, 2018:1-10. [DOI:10.1155/2018/1013640]
21. World Health Organization (2010) WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. WHO Press, Geneva, Switzerland. [DOI:10.1038/aja.2008.57]
22. Rahimipour M, Talebi AR, Anvari M, et al. (2013) Effects of different doses of ethanol on sperm parameters, chromatin structure and apoptosis in adult mice. Eur J Obstet Gynecol Reprod Biol, 170: 423-428. [DOI:10.1016/j.ejogrb.2013.06.038]
23. Pizzino G, Irrera N, Cucinotta M, et al. (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev, 2017:1-13. [DOI:10.1155/2017/8416763]
24. Jonwal C, Sisodia R, Saxena VK, Kesari KK (2018) Effect of 2.45 GHz microwave radiation on the fertility pattern in male mice. Gen Physiol Biophys, 37:453-460. [DOI:10.4149/gpb_2017059]
25. Kesari KK and Behari J (2010) Effects of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicol Environ Chem, 92:135-1147. [DOI:10.1080/02772240903233637]
26. Behari J (2010) Biological responses of mobile phone frequency exposure. Indian J Exp Biol, 48: 959-981.
27. Ramaswamy H and Tang J (2010) Microwave and radio frequency heating. Food Sci Technol Int, 14:423-427. [DOI:10.1177/1082013208100534]
28. Yakymenko I, Tsybulin O, Sidorik E, et al. (2015) Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 35:186-202. [DOI:10.3109/15368378.2015.1043557]
29. Dharmaraja AT and Chakrapani H (2014) A small molecule for controlled generation of reactive oxygen species (ROS). Org Lett, 16:398-401. [DOI:10.1021/ol403300a]
30. Agarwal A, Gupta S, Sharma R (2016) Reactive oxygen species (ROS) measurement. In: Andrological Evaluation of Male Infertility, (Agarwal A, Gupta S, Sharma R, eds.), Springer, Cham, Switzerland. [DOI:10.1007/978-3-319-26797-5]
31. De Iuliis GN, Thomson LK, Mitchell LA, et al. (2009) DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod, 81:517-524. [DOI:10.1095/biolreprod.109.076836]
32. Sharma R, Martinez MP, Agarwal A (2020) Sperm chromatin integrity tests and indications. In: Male Infertility, (Parekattil S, Esteves S, Agarwal A. eds.), Springer, Cham, Switzerland. [DOI:10.1007/978-3-030-32300-4_8]
33. Alipour F, Jalali M, Nikravesh MR, et al. (2018) Assessment of sperm morphology, chromatin integrity, and catSper genes expression in hypothyroid mice. Acta Biol Hung, 69:244-258. [DOI:10.1556/018.68.2018.3.2]
34. Pourmasumi S, Khoradmehr A, Rahiminia T, et al. (2019) Evaluation of sperm chromatin integrity using aniline blue and toluidine blue staining in infertile and normozoospermic men. J Reprod Infertil, 20:95-101.
35. Avendaño C, Mata A, Sarmiento CAS, Doncel GF (2012) Use of laptop computers connected to internet through Wi-Fi de-creases human sperm motility and increases sperm DNA fragmentation. Fertil Steril, 97:39-45.e2. [DOI:10.1016/j.fertnstert.2011.10.012]
36. Ding SS, Ping S, Hong T (2018) Association between daily exposure to electromagnetic radiation from 4G smartphone and 2.45 GHz Wi-Fi and oxidative damage to semen of males attending a genetics clinic: a primary study. Int J Clin Exp Med, 11:2821-2830.
37. Saygin M, Caliskan S, Karahan N, et al. (2011) Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicol Ind Health, 27:455-463. [DOI:10.1177/0748233710389851]
38. Mahmoudi R, Mortazavi S, Safari S, et al. (2015) Effects of microwave electromagnetic radiations emitted from common Wi-Fi routers on rats' sperm count and motility. Int J Radiat Res, 13:363-368.
39. Shokri S, Soltani A, Kazemi M, et al. (2015) Effects of Wi-Fi (2.45 GHz) exposure on apoptosis, sperm pa-rameters and testicular histomorphometry in rats: a time course study. Cell J, 17:322-331.
40. Dasdag S, Taş M, Akdag MZ, Yegin K (2015) Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagn Biol Med, 34:37-42. [DOI:10.3109/15368378.2013.869752]
41. Minutoli L, Puzzolo D, Rinaldi M, et al. (2016) ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev, 2016:1-10. [DOI:10.1155/2016/2183026]
42. Yi W, Xiang-Liang T, Yu Z, et al. (2018) DEHP exposure destroys blood testis barrier (BTB) integrity of immature testes through excessive ROS mediated autophagy. Genes Dis, 5:263-274. [DOI:10.1016/j.gendis.2018.06.004]
43. Naz T, Chakraborty S, Saha S (2022) Role of fatty acids and calcium in male Reproduction. Reprod Dev Med, 6:57-64. [DOI:10.1097/RD9.0000000000000003]
44. Ozmen O and Kavrik O (2020) Ameliorative effects of vitamin C against hepatic pathology related to Wi-Fi (2.45 GHz electromagnetic radiation) in rats. Int J Radiat Res, 18:405-412.
45. Moradpour R, Shokri M, Abedian S, et al. (2020) The protective effect of melatonin on liver damage induced by mobile phone radiation in mice model. Int J Radiat Res, 18:133-141
46. Jelodar G, Akbari A, Parvaeei P, Nazii S (2018) Vitamin E protects rat testis, eye and erythrocyte from oxidative stress during exposure to radiofrequency wave generated by a BTS antenna model. Int J Radiat Res, 16:217-224.
47. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C, 27:120-139. [DOI:10.1080/10590500902885684]
48. Ghassem M, Arihara K, Mohammadi S, et al. (2017) Identification of two novel antioxidant peptides from edi-ble bird's nest (Aerodramus fuciphagus) protein hydrolysates. Food Funct, 8:2046-2052. [DOI:10.1039/C6FO01615D]
49. Lu Y, Han DB, Wang JY, et al. (1995) Study on The Main Ingredients of The Three Species of Edible Swift's Nest of Yunnan Province. Zool Res, 16:385-391.
50. Blaner WS, Shmarakov IO, Traber MG (2021) Vitamin A and vitamin E: Will the real antioxidant please stand up? Annu Rev Nutr, 41:105-131. [DOI:10.1146/annurev-nutr-082018-124228]
51. Tagliaferri S, Porri D, De Giuseppe R, et al. (2019) The controversial role of vitamin D as an anti-oxidant: results from randomised controlled trials. Nutr Res Rev, 32:99-105. [DOI:10.1017/S0954422418000197]
52. Nowak D, Gośliński M, Wojtowicz E, Przygoński K (2018) Antioxidant properties and phenolic compounds of vitamin C-rich juices. J Food Sci, 83:2237-2246. [DOI:10.1111/1750-3841.14284]
53. Aitken RJ and Roman SD (2008) Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev, 1:15-24. [DOI:10.4161/oxim.1.1.6843]
54. Looi QH and Omar AR (2016) Swiftlets and edible bird's nest industry in Asia. PJSRR 2:32-48.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jaffar F, Osman K, Hui C, Zulkefli A, Ibrahim S. Effect of Wi-Fi exposure and edible bird nest supplementation on the testicular oxidative stress status and sperm quality in male Sprague-Dawley rat pups. Int J Radiat Res 2024; 22 (2) :329-338
URL: http://ijrr.com/article-1-5419-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 2 (4-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4660