[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

Volume 23, Issue 3 (8-2025)                   Int J Radiat Res 2025, 23(3): 551-556 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dahdouh N, Chaoui Z, Khoudri S. New radiobiological comparison of intensity-modulated radiation therapy prostate plans of seven and five fields. Int J Radiat Res 2025; 23 (3) :551-556
URL: http://ijrr.com/article-1-6529-en.html
Laboratory of Optoelectronics and Devices, Physics Department, Faculty of Sciences, UFAS1, Algeria , zchaoui@univ-setif.dz
Abstract:   (520 Views)
Background: Based on recently published studies carried out in various institutions, the dosimetric evaluation was conducted to compare 5 and 7-field intensity-modulated radiation therapy (IMRT) plans. So far, dosimetric indexes have been used as the main parameters. The present study is new, it uses more sophisticated tools of evaluation based on radiobiologic indices as recommended. Materials and Methods: A comparative study of five and seven fields IMRT plans of sixteen randomly chosen prostate cancer cases has been evaluated radiobiologically. The modified Poisson model of Marsden allows us to calculate the tumor control probability (TCP) of the treated planning target volume (PTV60); The Lyman–Kutcher–Burman (LKB) model is used to calculate normal tissue complication probability (NTCP) of the organs at risk (rectal wall, bladder wall and femoral heads). We have elaborated an in-house program RADBIOFOR to calculate TCP and NTCP and use the dose volume histograms (DVH) from the treatment planning system (TPS) as input information. Results: A significant statistical difference was observed for the bladder (P-value=0.045). The statistical analysis for the rectum did not show a difference (P-value= 0.234). Meanwhile, 88% of the cases exhibited slightly lower toxicities with the 7-field compared to the 5-field. Conclusion: The present study recommends using a 7-field IMRT plan since it has proved to predict lower toxicities in the bladder and the rectum wall even though the 5-field predicts minor improvements in the local control in the tumor compared to the 7-field.
Full-Text [PDF 975 kb]   (190 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, et al. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6): 394-424. [DOI:10.3322/caac.21492]
2. Shimizuguchi T, Nihei K, Okano T, Machitori Y, Ito K, et al. (2017) A comparison of clinical outcomes between three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer. International Journal of Clinical Oncology, 22: 373-379. [DOI:10.1007/s10147-016-1057-y]
3. Bhardwaj AK, Sharma S, Oinam A, Kehwar T, Chakarvarti S (2007) 3-Dimensional conformal radiotherapy versus intensity modulated radiotherapy for localized prostate cancer: Dosimetric and radiobiologic analysis. International Journal of Radiation Research, 5(1): 1-8. [DOI:10.4103/0973-1482.31967]
4. Shanei A, Abedi I, Saadatmand P, Amouheidari AR, Akbari-Zadeh H (2020) Comparison of 3D conformal and intensity modulated radiotherapy in early-stage oral tongue cancer: Dosimetric and radiobiological evaluation. International Journal of Radiation Research, 18(1): 33-42.
5. Dai Z, Zhu L, Wang A, Guo X, Liu Y, et al. (2023) Dosimetric and biological comparison of treatment plans between LINAC and robot systems in stereotactic body radiation therapy for localized prostate cancer. International Journal of Radiation Research, 21(1): 15-22.
6. Shanei A, Amouheidari A, Abedi I, Kazemzadeh A, Jaafari A (2020) Radiobiological comparison of 3D conformal and intensity modulated radiation therapy in the treatment of left-sided breast cancer. International Journal of Radiation Research, 18 (2): 315-322.
7. Zope MK, Patil DB, Kuriakose A, Rahman A, Trivedi V, et al. (2019) A Comparative Study of Dosimetric Analysis of Three Different Sets of Five Field and Seven Field IMRT Plans for Prostate Cancer. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 8(03): 175. [DOI:10.4236/ijmpcero.2019.83016]
8. Mahdavi SRM, Gharehbagh EJ, Nikoofar AR, Mofid B, Vasheghani M, et al. (2017) Radiation treatment planning for prostate cancer: A new dosimetric comparison of five and seven field IMRT plans. International Journal of Radiation Research, 15(2): 177. [DOI:10.18869/acadpub.ijrr.15.2.177]
9. Fowler JF, Ritter MA, Chappell RJ, Brenner DJ (2003) What hypofractionated protocols should be tested for prostate cancer?. Int J Radiat Oncol Biol Phys, 56(4): 1093-1104. [DOI:10.1016/S0360-3016(03)00132-9]
10. Brenner DJ and Hall EJ (1999) Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys, 43(5): 1095-1101. [DOI:10.1016/S0360-3016(98)00438-6]
11. King CR and Fowler JF (2001) A simple analytic derivation suggests that prostate cancer α/β ratio is low. Int J Radiat Oncol Biol Phys, 51(1): 213-214. [DOI:10.1016/S0360-3016(01)01651-0]
12. Bentzen SM and Ritter MA (2005) The α/β ratio for prostate cancer: what is it, really?. Radiotherapy and Oncology, 76(1): 1-3. [DOI:10.1016/j.radonc.2005.06.009]
13. Vogelius IR and Bentzen SM (2013) Meta-analysis of the alpha/beta ratio for prostate cancer in the presence of an overall time factor: bad news, good news, or no news? Int J Radiat Oncol Biol Phys, 85(1): 89-94. [DOI:10.1016/j.ijrobp.2012.03.004]
14. Incrocci L, Wortel RC, Alemayehu WG, Aluwini S, Schimmel E, et al. (2016) Hypofractionated versus conventionally fractionated radiotherapy for patients with localized prostate cancer (HYPRO): final efficacy results from a randomized, multicenter, open-label, phase 3 trial. The Lancet Oncology, 17(8): 1061-1069. [DOI:10.1016/S1470-2045(16)30070-5]
15. Lukka H, Hayter C, Julian JA, Warde P, Morris WJ, et al. (2005) Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. Journal of Clinical Oncology, 23(25): 6132-6138. [DOI:10.1200/JCO.2005.06.153]
16. Catton CN, Lukka H, Gu CS, Martin JM, Supiot S, et al. (2017) Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. Journal of Clinical Oncology, 35(17): 1884-1890. [DOI:10.1200/JCO.2016.71.7397]
17. Miles EF and Lee WR (2008) Hypofractionation for prostate cancer: a critical review. In Seminars in Radiation Oncology, 18(1): 41-47. [DOI:10.1016/j.semradonc.2007.09.006]
18. Langrand-Escure J, De Crevoisier R, Llagostera C, Créhange G, Delaroche G, et al. (2018) Dose constraints for moderate hypofractionated radiotherapy for prostate cancer: The French genito-urinary group (GETUG) recommendations. Cancer/Radiothérapie, 22(2): 193-198. [DOI:10.1016/j.canrad.2017.11.004]
19. ICRU (2010) Prescribing, recording, and reporting photon-beam intensity modulated radiation therapy (IMRT). ICRU Report 83. Journal of the International Commission on Radiation Units and Measurements, 10(1): 106. [DOI:10.1093/jicru/ndq002]
20. Eclipse Algorithm Reference guide version 11.0.31 (2009) iso 13485(P/N B502612R03A) Varian Medical System UKLtd.
21. Webb S and Nahum AE (1993) A model for calculating tumor control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Physics in Medicine & Biology, 38(6): 653. [DOI:10.1088/0031-9155/38/6/001]
22. Sanchez-Nieto B and Nahum AE (2000) BIOPLAN: software for the biological evaluation of radiotherapy treatment plans. Medical Dosimetry, 25(2): 71-76. [DOI:10.1016/S0958-3947(00)00031-5]
23. Chang JH, Gehrke C, Prabhakar R, Gill S, Wada M, et al. (2016) RADBIOMOD: a simple program for utilizing biological modelling in radiotherapy plan evaluation. Physica Medica, 32(1): 248-254. [DOI:10.1016/j.ejmp.2015.10.091]
24. Uzan J and Nahum AE (2012) Radiobiologically guided optimization of the prescription dose and fractionation scheme in radiotherapy using BioSuite. The British Journal of Radiology, 85(1017): 1279-1286. [DOI:10.1259/bjr/20476567]
25. Dearnaley DP, Sydes MR, Graham JD, Aird EG, Bottomley D, et al. (2007) Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomized controlled trial. The Lancet Oncology, 8(6): 475-487. [DOI:10.1016/S1470-2045(07)70143-2]
26. Lyman JT (1985) Complication probability as assessed from dose-volume histograms. Radiation Research, 104(2s): S13-S19. [DOI:10.2307/3576626]
27. Burman C, Kutcher GJ, Emami B, Goitein M (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys, 21(1): 123-135. [DOI:10.1016/0360-3016(91)90172-Z]
28. Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys, 21(1): 137-146. [DOI:10.1016/0360-3016(91)90173-2]
29. Cody WJ (1969) Rational Chebyshev approximations for the error function. Mathematics of Computation, 23(107), 631-637. [DOI:10.1090/S0025-5718-1969-0247736-4]
30. Bohm EL, Hendry JF, Hill JR, Heron JM, Trott KL, and Wondergem JC (2010) Radiation biology: a handbook for teachers and students. Vienna: International Atomic Energy Agency, 94-8.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4722