[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 20, Issue 4 (10-2022) ::
Int J Radiat Res 2022, 20(4): 829-837 Back to browse issues page
Choline glycerophosphate and silymarin modulate brain and intestinal injuries in rats exposed to gamma-radiation
N. Abdel-Aziz , A.A. Elkady , E.M. Elgazzar
Health Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt , elkadyah13@gmail.com
Abstract:   (825 Views)
Background: the aim of this study was to investigate the role of choline glycerophosphate (GPC) either alone or combined with silymarin in modulating whole body gamma irradiation-induced brain and intestinal injuries in rats. Materials and Methods: Rats were irradiated with 7Gy then subjected to GPC and/ or silymarin for two weeks. At the end of the experiment, the animals were sacrificed then, brain and intestine samples were removed for biochemical, molecular and histopathological examinations. Results: it has been detected that GPC alone or combined with silymarin ameliorated the adverse effects of radiation as revealed by the inhibition of oxidative stress, apoptotic and inflammatory markers [Malondialdehyde (MDA), Caspase-3 Tumors necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nuclear factor kappa-B (NF-kB)]. However, Total antioxidant capacity (TAC), anti-inflammatory marker, Interleukin-10 (IL-10) and inhibitor of Nuclear factor kappa-Ba (IkBa) mRNA were increased. This was also accompanied by a significant increase in the Acetylcholine (ACh) level, Choline Acetyltransferase (ChAT) activity and Alpha-7 nicotinic receptor (α7nAChR), mRNA-expression and a significant decrease in the activity of Acetylcholine esterase (AChE) as compared with the corresponding values of the irradiated group. Moreover, a reduction in the tissue lesions was observed in brain and intestinal tissues. Conclusion: Choline glycerolphosphate and silymarin exhibited modulating effect against detrimental effects of gamma-radiation via cholinergic anti-inflammatory pathway.
Keywords: γ-radiation, choline glycerophosphate, silymarin, brain and intestinal injury.
Full-Text [PDF 1334 kb]   (514 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. Yu J (2013) Intestinal stem cell injury and protection during cancer therapy. Translational Cancer Research, 2(5): 384.
2. Salim S (2017) Oxidative stress and the central nervous system. Journal of Pharmacology and Experimental Therapeutics, 360(1): 201-205. [DOI:10.1124/jpet.116.237503] [PMID] []
3. Ahmed AQ, Salman AY, HassanAB, Abojassim AA, Mraity HAA (2020) The impact of Gamma Ray on DNA molecule. International Journal of Radiology and Radiation Oncology, 6(1): 011-013. [DOI:10.17352/ijrro.000038]
4. Radwan RR and Karam HM (2020) Resveratrol attenuates intestinal injury in irradiated rats via PI3K/Akt/mTOR signaling pathway. Environmental Toxicology, 35(2): 223-230. [DOI:10.1002/tox.22859] [PMID]
5. Moussa L, Usunier B, Demarquay C, Benderitter M, Tamarat R, Sémont A, Mathieu N (2016) Bowel radiation injury: complexity of the pathophysiology and promises of cell and tissue engineering. Cell Transplantation, 25(10): 1723-1746. [DOI:10.3727/096368916X691664] [PMID]
6. Zoli M, Pucci S, Vilella A, Gotti C (2018) Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr Neuropharmacol, 16(4): 338-349. [DOI:10.2174/1570159X15666170912110450] [PMID] []
7. El-Missiry MA, Shabana S, Ghazala SJ, Othman AI, Amer ME (2021) Melatonin exerts a neuroprotective effect against γ-radiation-induced brain injury in the rat through the modulation of neurotransmitters, inflammatory cytokines, oxidative stress, and apoptosis. Environ Sci Pollut Res Int, 28(24): 31108-31121. [DOI:10.1007/s11356-021-12951-5] [PMID]
8. Abdel-Aziz N, Moustafa EM, Saada, HN (2021) The impact of citicoline on brain injury in rats subjected to head irradiation. Environmental Science and Pollution Research, 28(8): 9742-9752. [DOI:10.1007/s11356-020-11101-7] [PMID]
9. Yahyapour R, Shabeeb D, Cheki M, Musa AE, Farhood B, Rezaeyan A, et al. (2018) Radiation protection and mitigation by natural antioxidants and flavonoids: implications to radiotherapy and radiation disasters. Current Molecular Pharmacology, 11(4): 285-304. [DOI:10.2174/1874467211666180619125653] [PMID]
10. Gillessen A and Schmidt HHJ (2020) Silymarin as supportive treatment in liver diseases: A narrative review. Advances in therapy, 37(4): 1279-1301. [DOI:10.1007/s12325-020-01251-y] [PMID] []
11. Vahabzadeh M, Amiri N, Karimi G (2018) Effects of silymarin on metabolic syndrome: a review. Journal of the Science of Food and Agriculture, 98(13): 4816-4823. [DOI:10.1002/jsfa.9115] [PMID]
12. Taleb A, Ahmad KA, Ihsan AU, Qu J, Lin N, Hezam K, Koju N, Hui L, Qilong D (2018) Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomedicine & Pharmacotherapy, 102: 689-698. [DOI:10.1016/j.biopha.2018.03.140] [PMID]
13. Zalat ZA, Kohaf NA, Alm El-Din MA, Elewa HA, Abdel-Latif MM (2021) Silymarin: A promising cardioprotective agent. Azhar Int J Pharm Med Sci, 1(1): 13-21. [DOI:10.21608/aijpms.2021.52962.1014]
14. El-Elimat T, Alzoubi KH, AbuAlSamen, MM, Al Subeh ZY, Graf TN, Oberlies NH (2019) Silymarin prevents memory impairments, anxiety, and depressive-like symptoms in a rat model of post-traumatic stress disorder. Planta Medica, 85(01): 32-40. [DOI:10.1055/a-0710-5673] [PMID]
15. Al-Kadi A, Ahmed AS, El-Tahawy NFG, Khalifa MMA, El-Daly M (2020) Silymarin protects against sepsis-induced acute liver and kidney injury via anti-inflammatory and antioxidant mechanisms in the rat. Journal of advanced Biomedical and Pharmaceutical Sciences, 3(4): 190-197. [DOI:10.21608/jabps.2020.37074.1091]
16. Delmas D, Xiao J, Vejux A, Aires V (2020) Silymarin and cancer: A dual strategy in both in chemoprevention and chemosensitivity. Molecules, 25(9): 2009. [DOI:10.3390/molecules25092009] [PMID] []
17. Tuboly E, Gáspár R, Ibor MO, Gömöri K, Kiss B, Strifler G, Hartmann P, et al. (2019) L-Alpha-glycerylphosphorylcholine can be cytoprotective or cytotoxic in neonatal rat cardiac myocytes: A double-edged sword phenomenon. Molecular and Cellular Biochemistry, 460(1): 195-203. [DOI:10.1007/s11010-019-03580-1] [PMID] []
18. Tőkés T, Tuboly E, Varga G, Major L, Ghyczy M, Kaszaki J, Boros M (2015) Protective effects of l-alpha-glycerylphosphorylcholine on ischaemia-reperfusion-induced inflammatory reactions. European Journal of Nutrition, 54(1): 109-118. [DOI:10.1007/s00394-014-0691-2] [PMID]
19. Tuboly E, Molnár R, Tőkés T, Turányi RN, Hartmann P, Mészáros, AT et al. (2017) Excessive alcohol consumption induces methane production in humans and rats. Scientific Reports, 7(1): 1-10. [DOI:10.1038/s41598-017-07637-3] [PMID] []
20. Xu ZQ, Zhang WJ, Su DF, Zhang GQ, Miao CY (2021) Cellular responses and functions of α7 nicotinic acetylcholine receptor activation in the brain: a narrative review. Annals of Translational Medicine, 9(6). [DOI:10.21037/atm-21-273] [PMID] []
21. Traini E, Bramanti V, Amenta F (2013) Choline alphoscerate (alpha-glyceryl-phosphoryl-choline) an old choline-containing phospholipid with a still interesting profile as cognition enhancing agent. Current Alzheimer Research, 10(10): 1070-1079. [DOI:10.2174/15672050113106660173] [PMID]
22. Lee SH, Choi BY, Kim JH, Kho AR, Sohn M, Song HK, Choi HC, Suh SW (2017) Late treatment with choline alfoscerate (l-alpha glycerylphosphorylcholine, α-GPC) increases hippocampal neurogenesis and provides protection against seizure-induced neuronal death and cognitive impairment. Brain research, 1654: 66-76. [DOI:10.1016/j.brainres.2016.10.011] [PMID]
23. Plangár I, Szabó, ER, Tőkés T, Mán I, Brinyiczki K, Fekete G, et al. (2014) Radio-neuroprotective effect of L-alpha-glycerylphosphorylcholine (GPC) in an experimental rat model. Journal of neuro-oncology, 119(2): 253-261. [DOI:10.1007/s11060-014-1489-z] [PMID]
24. Tőkés T, Varga G, Garab D, Nagy Z, Fekete G, Tuboly E, Plangár I, Mán I, Szabó RE, et al. (2014) Peripheral inflammatory activation after hippocampus irradiation in the rat. Int J Radiat Biol, 90(1): 1-6. [DOI:10.3109/09553002.2013.836617] [PMID]
25. Tayebati SK, Tomassoni D, Di Stefano A, Sozio P, Cerasa LS, Amenta F (2011) Effect of choline-containing phospholipids on brain cholinergic transporters in the rat. Journal of the neurological sciences, 302(1-2): 49-57. [DOI:10.1016/j.jns.2010.11.028] [PMID]
26. Cruz T, Gálvez J, Crespo E, Ocete MA, Zarzuelo A (2001) Effects of silymarin on the acute stage of the trinitrobenzenesulphonic acid model of rat colitis. Planta Medica, 67(01): 94-96. [DOI:10.1055/s-2001-10620] [PMID]
27. Shokouhi G, Kosari-Nasab M, Salari AA (2020) Silymarin sex-dependently improves cognitive functions and alters TNF-α, BDNF, and glutamate in the hippocampus of mice with mild traumatic brain injury. Life Sciences, 257: 118049. [DOI:10.1016/j.lfs.2020.118049] [PMID]
28. Suvarna KS, Layton C, Bancroft JD (2013) Bancroft's theory and practice of histological techniques, 7th Edition, Churchill Livingstone, USA, 766.
29. Musa AE, Shabeeb D, Alhilfi HSQ (2019) Protective effect of melatonin against radiotherapy-induced small intestinal oxidative stress: biochemical evaluation. Medicina, 55(6): 308. [DOI:10.3390/medicina55060308] [PMID] []
30. Song C, Gao X, Song W, Zeng D, Shan S, Yin Y, Li Y, Baranenko D, Lu W (2020) Simulated spatial radiation impacts learning and memory ability with alterations of neuromorphology and gut microbiota in mice. RSC Advances, 10(27): 16196-16208. [DOI:10.1039/D0RA01017K] [PMID] []
31. Hassan AA, Moustafa EM, El-khashab IH, Mansour SZ (2021) Mangosteen Hinders Gamma Radiation-Mediated Oxidative Stress and Liver Injury by Down-Regulating TNF-α/NF-κB and Pro-Fibrotic Factor TGF-β1 Inducing Inflammatory Signaling. Dose Response, 19(2): 15593258211025190. [DOI:10.1177/15593258211025190] [PMID] []
32. El-Maraghi EF, Abdel-Fattah KI, Soliman SM, El-Sayed WM (2020) Taurine abates the liver damage induced by γ-irradiation in rats through anti-inflammatory and anti-apoptotic pathways. Int J Radiat Biol, 96(12): 1550-1559. [DOI:10.1080/09553002.2020.1828656] [PMID]
33. Ismail AF and El-Sonbaty SM (2016) Fermentation enhances Ginkgo biloba protective role on gamma-irradiation induced neuroinflammatory gene expression and stress hormones in rat brain. Journal of Photochemistry and Photobiology B: Biology, 158: 154-163. [DOI:10.1016/j.jphotobiol.2016.02.039] [PMID]
34. Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 25(22): 5474. [DOI:10.3390/molecules25225474] [PMID] []
35. Mansour SZ, El-Marakby, SM, Moawed FS (2017) Ameliorative effects of rutin on hepatic encephalopathy-induced by thioacetamide or gamma irradiation. Journal of Photochemistry and Photobiology B: Biology, 172: 20-27. [DOI:10.1016/j.jphotobiol.2017.05.005] [PMID]
36. Elkiki S and Galal S (2018) Panax ginseng extract modulates cerebral damage caused by gamma Irradiation in male albino rats. Egyptian Journal of Radiation Sciences and Applications, 31(2): 111-124.
37. Erukainure OL, Atolani O, Banerjee P, Abel R, Pooe OJ, Adeyemi, et al. (2021) Oxidative testicular injury: effect of l-leucine on redox, cholinergic and purinergic dysfunctions, and dysregulated metabolic pathways. Amino Acids, 53(3): 359-380. [DOI:10.1007/s00726-021-02954-4] [PMID]
38. Pal A, Kumar KH, Bhushan B, Saharan V (2017) Ashwagandha root extract inhibits acetylcholine esterase, protein modification and ameliorates H 2 O 2-induced oxidative stress in rat lymphocytes. Pharmacognosy Journal, 9(3). [DOI:10.5530/pj.2017.3.52]
39. Brinkman DJ, Ten Hove AS, Vervoordeldonk MJ, Luyer MD, de Jonge WJ (2019) Neuroimmune interactions in the gut and their significance for intestinal immunity. Cells, 8(7): 670. [DOI:10.3390/cells8070670] [PMID] []
40. Niesler B, Kuerten S, Demir IE, Schäfer KH (2021) Disorders of the enteric nervous system-a holistic view. Nature Reviews Gastroenterology & Hepatology, 18(6): 393-410. [DOI:10.1038/s41575-020-00385-2] [PMID]
41. Chen, F., Wei, X., Chen, X., Xiang, L., Meng, X. and Feng, J. (2020) The role of the α7nAChR-mediated cholinergic anti-inflammatory pathway in Hirschsprung associated enterocolitis. Inflammation, 44(3): 821-834. [DOI:10.21203/rs.3.rs-17106/v1]
42. Rosas‐Ballina M and Tracey KJ (2009) Cholinergic control of inflammation. Journal of Internal Medicine, 265(6): 663-679. [DOI:10.1111/j.1365-2796.2009.02098.x] [PMID] []
43. Aboelwafa HR, El-Kott AF, Abd-Ella EM, Yousef HN (2020) The possible neuroprotective effect of silymarin against aluminum chloride-prompted Alzheimer's-like disease in Rats. Brain Sciences, 10(9): 628. [DOI:10.3390/brainsci10090628] [PMID] []
44. Al-hazmi A, Alomery A, Abderrahim LA (2019) Silymarin as a therapeutic extract for intestinal and splenic injuries induced by microcystin-LR in mice. Journal of King Saud University-Science, 31(4): 1414-1417. [DOI:10.1016/j.jksus.2019.02.018]
45. Strifler G, Tuboly E, Görbe A, Boros M, Pécz D, Hartmann P (2016) Targeting Mitochondrial Dysfunction with L-Alpha Glycerylphosphorylcholine. plos one, 11(11) :e0166682. [DOI:10.1371/journal.pone.0166682] [PMID] []
46. Yuan ZH, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, et al. (2021) Dietary choline-enhanced skin immune response of juvenile grass carp might be related to the STAT3 and NF-kB signaling pathway (Ctenopharyngodon idella). Front Nutr, 8: 652767. [DOI:10.3389/fnut.2021.652767] [PMID] []
47. Kimura H, Imura YK, Tomiyasu H, Mihara T, Kaji N, Ohno K, Unno T, et al. (2019) Neural anti-inflammatory action mediated by two types of acetylcholine receptors in the small intestine. Scientific reports, 9(1): 1-11. [DOI:10.1038/s41598-019-41698-w] [PMID] []
48. Guo H, Cao H, Cui X, Zheng W, Wang S, Yu J, Chen Z (2019) Silymarin's inhibition and treatment effects for Alzheimer's disease. Molecules, 24(9): 1748. [DOI:10.3390/molecules24091748] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdel-Aziz N, Elkady A, Elgazzar E. Choline glycerophosphate and silymarin modulate brain and intestinal injuries in rats exposed to gamma-radiation. Int J Radiat Res 2022; 20 (4) :829-837
URL: http://ijrr.com/article-1-4477-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 4 (10-2022) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4657