Department of Radiation Oncology, University of Toledo Medical Center, 1325 Conference Drive, Toledo, OH 43614, USA , ishmael.parsai@gmail.com
Abstract: (1090 Views)
Background:With the advent of Intensity Modulated Radiotherapy (IMRT) and recently, Volumetric Modulated Arc Therapy (VMAT), treatment planning using Flattening Filter Free (FFF) beams can meet all of the energy requirements in radiation therapy clinics. Manufacturers of linear accelerators no longer need to install a flattening filter (FF) in gantry head. This study aims to provide evidence of the superiority of FFF to FF through both dosimetric measurements and clinical treatment plans.Materials and Methods: A 50×50×50cm3 water phantom was created in the RayStation treatment planning system (TPS) for dosimetry comparisons. Flat beam profiles were generated using FFF beam through an optimization process for 10×10 to 30×30cm2 field sizes. Next, a comparison of treatment plans was made using 21 Head and Neck and 14 Lung/Mediastinum treatment sites using 6MV and 6MV-FFF beams.Results:Using FFF beams, profiles with flatness and symmetry identical to or better than those of the flattened beams were produced. At the very edge of the optimized plans for FFF beams, horns had the highest gamma index deviation <1.5% of the normalized dose. For clinical plans evaluated, most of the mean doses to organs-at-risk (OAR) volumes receiving 5% to 30% of the prescription dose were reduced with FFF beams.Conclusion:These results indicate the feasibility of delivering flat beams with FFF quality and producing treatment plans with equal or higher qualities in PTV coverage while achieving better sparing of OAR which will allow escalation of target dose if desired. Plus, removing FF will simplify the gantry head and reduces quality assurance and machine maintenance efforts.
1. 1. Fu W, Dai J, Hu Y, Han D, Song Y (2004) Delivery time comparison for intensity-modulated radiation therapy with/without flattening filter: a planning study. Phys Med Biol, 49(8): 1535-1547. [DOI:10.1088/0031-9155/49/8/011] [PMID]
2. Lai Y, Chen S, Xu C, Shi L, Fu L, Ha H, et al. (2017) Dosimetric superiority of flattening filter free beams for single-fraction stereotactic radiosurgery in single brain metastasis. Oncotarget, 8(21): 35272-35279. [DOI:10.18632/oncotarget.13085] [PMID] []
3. Pichandi A, Ganesh KM, Jerin A, Balaji K, Kilara G (2014) Analysis of physical parameters and determination of inflection point for Flattening Filter Free beams in medical linear accelerator. Rep Pract Oncol Radiother, 19(5):322-331. [DOI:10.1016/j.rpor.2014.01.004] [PMID] []
4. Potter NJ, Lebron S, Li JG, Liu C, Lu B (2019) Feasibility study of using flattening-filter-free photon beams to deliver conventional flat beams. Med Dosim, 44(4): e25-e31. [DOI:10.1016/j.meddos.2018.12.002] [PMID]
5. Titt U, Vassiliev ON, Ponisch F, Dong L, Liu H, Mohan R (2006) A flattening filter free photon treatment concept evaluation with Monte Carlo. Med Phys, 33(6): 1595-1602. [DOI:10.1118/1.2198327] [PMID]
6. Titt U, Vassiliev ON, Ponisch F, Kry SF, Mohan R (2006) Monte Carlo study of backscatter in a flattening filter free clinical accelerator. Med Phys, 33(9): 3270-3273. [DOI:10.1118/1.2229430] [PMID]
7. Prendergast BM, Fiveash JB, Popple RA, Clark GM, Thomas EM, Minnich DJ, et al. (2013) Flattening filter-free linac improves treatment delivery efficiency in stereotactic body radiation therapy. Journal of Applied Clinical Medical Physics, 14(3): 4126-4126. [DOI:10.1120/jacmp.v14i3.4126] [PMID] []
8. Purdie TG, Bissonnette JP, Franks K, Bezjak A, Payne D, Sie F, et al. (2007) Cone-beam computed tomography for on-line image guidance of lung stereotactic radiotherapy: localization, verification, and intrafraction tumor position. Int J Radiat Oncol Biol Phys, 68(1): 243-252. [DOI:10.1016/j.ijrobp.2006.12.022] [PMID]
9. Scorsetti M, Alongi F, Castiglioni S, Clivio A, Fogliata A, Lobefalo F, et al. (2011) Feasibility and early clinical assessment of flattening filter free (FFF) based stereotactic body radiotherapy (SBRT) treatments. Radiat Oncol, 6: 113. [DOI:10.1186/1748-717X-6-113] [PMID] []
10. Arslan A and Sengul B (2020) Comparison of radiotherapy techniques with flattening filter and flattening filter-free in lung radiotherapy according to the treatment volume size. Scientific Reports, 10(1): 8983. [DOI:10.1038/s41598-020-66079-6] [PMID] []
11. Nakano H, Minami K, Yagi M, Imaizumi H, Otani Y, Inoue S, et al. (2018) Radiobiological effects of flattening filter-free photon beams on A549 non-small-cell lung cancer cells. Journal of Radiation Research, 59(4): 442-445. [DOI:10.1093/jrr/rry041] [PMID] []
12. Parsai E, Pearson D, Kvale T (2007) Consequences of removing the flattening filter from linear accelerators in generating high dose rate photon beams for clinical applications: A Monte Carlo study verified by measurement. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 261: 755-759. [DOI:10.1016/j.nimb.2007.03.020]
13. Rieber J, Tonndorf-Martini E, Schramm O, Rhein B, Stefanowicz S, Kappes J, et al. (2016) Radiosurgery with flattening-filter-free techniques in the treatment of brain metastases : Plan comparison and early clinical evaluation. Strahlenther Onkol, 192(11):789-796. [DOI:10.1007/s00066-016-1012-x] [PMID]
18. Kim G, Rice R, Lawson J, Murphy K, Pawlicki T (2012) Stereotactic Radiosurgery With FFF Mode Photon Beams. Int J Radiat Oncol Biol Phys, 84(3): S823. [DOI:10.1016/j.ijrobp.2012.07.2205]
19. Salari E, Parsai EI, Shvydka D, Sperling NN (2022) Evaluation of parameters affecting gamma passing rate in patient-specific QAs for multiple brain lesions IMRS treatments using ray-station treatment planning system. J Appl Clin Med Phys, 23(1): e13467. [DOI:10.1002/acm2.13467] [PMID] []
20. Cashmore J (2008) The characterization of unflattened photon beams from a 6 MV linear accelerator. Phys Med Biol, 53(7):1933-1946. [DOI:10.1088/0031-9155/53/7/009] [PMID]
21. Thomas EM, Popple RA, Prendergast BM, Clark GM Dobelbower MC, Fiveash JB (2013) Effects of flattening filter-free and volumetric-modulated arc therapy delivery on treatment efficiency. J Appl Clin Med Phys, [Internet]. [PMC5714642]; 14(6): 4328. [DOI:10.1120/jacmp.v14i6.4328] [PMID] []
Parsai E, Salari E, Shvydka D, Wan J. Flattened photon beams, an obsolete feature in modern linear accelerators. Int J Radiat Res 2022; 20 (4) :845-850 URL: http://ijrr.com/article-1-4487-en.html