Süleyman Demirel University, Institute of Science, Department of Bioengineering, Isparta, Türkiye , irempostaci@gmail.com
Abstract: (662 Views)
Background:The goal of this study was to analyze the prophylactic effects of quercetin (Qu) against testes damage induced by 2600 MHz electromagnetic field (EMF) in rats. Materials and Methods: Thirty-two male rats (Wistar-Albino) were indiscriminately separated into four groups which were named: Control, Sham-exposed, EMF-exposed (EMF, 1 h day−1 for 30 days), and EMF + Qu (100 mg/kg/daily) groups. After 30 days, the rats were sacrificed, testicular tissues were taken, and routine procedures were performed for histological and immunohistochemical evaluations. Results: When the testicular tissue of the control group was evaluated histopathologically, it was concluded that structures such as Leydig cells and seminiferous tubules were in normal condition and there was no change. No bleeding or inflammation was observed in the general structure of testicular tissues. Irregularities in spermatogenic cell configuration and shedding in the seminiferous epithelium were observed in the EMF and EMF + Qu groups. Findings close to our control group were detected in the sham-exposed and EMF + Qu groups. In addition, tumor necrosis factor-α (TNF-α) immune reactions in were EMF+ Qu group was decreased compared to the EMF group. Conclusion: In histopathological and immunohistochemical evaluation, it has been proven that EMF causes damage to testicular tissue. However, Qu demonstrated partial ameliorative effects on the pathological findings of the current study.
1. Vafaei S, Motejaded F, Ebrahimzadeh-Bideskan A (2020) Protective effect of crocin on electromagnetic field-induced testicular damage and heat shock protein A2 expression in male BALB/c mice. Iran J Basic Med Sci, 23(1): 102.
2. Jaffar FHF, Osman K, Ismail NH, Chin KY, Ibrahim SF (2019) Adverse effects of Wi-Fi radiation on male reproductive system: a systematic review. Tohoku J Exp Med, 248(3): 169-179. [DOI:10.1620/tjem.248.169]
3. Yahyazadeh A and Altunkaynak BZ (2019) Protective effects of luteolin on rat testis following exposure to 900 MHz electromagnetic field. Biotech Histochem, 94(4): 298-307. [DOI:10.1080/10520295.2019.1566568]
4. Saygin M, Asci H, Ozmen O, Cankara FN, Dincoglu D, Ilhan I (2016) Impact of 2.45 GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: The role of gallic acid. Environ Toxicol, 31(12): 1771-1784. [DOI:10.1002/tox.22179]
5. Shahin NN, El-Nabarawy NA, Gouda AS, Mégarbane B (2019) The protective role of spermine against male reproductive aberrations induced by exposure to electromagnetic field-An experimental investigation in the rat. Toxicol Appl Pharmacol, 370: 117-130. [DOI:10.1016/j.taap.2019.03.009]
6. Khoshbakht S, Motejaded F, Karimi S, Jalilvand N, Ebrahimzadeh-Bideskan A (2021) Protective effects of selenium on electromagnetic field-induced apoptosis, aromatase P450 activity, and leptin receptor expression in rat testis. Iran J Basic Med Sci, 24(3): 322.
7. Gupta V, Srivastava R (2022) 2.45 GHz microwave radiation induced oxidative stress: Role of inflammatory cytokines in regulating male fertility through estrogen receptor alpha in Gallus gallus domesticus. Biochem Biophys Res Commun, 629: 61-70. [DOI:10.1016/j.bbrc.2022.09.009]
8. Shahidi F, Zhong Y (2015) Measurement of antioxidant activity. J Funct Foods, 18: 757-781. [DOI:10.1016/j.jff.2015.01.047]
9. Munteanu IG, Apetrei C (2021) Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci, 22(7): 3380. [DOI:10.3390/ijms22073380]
10. Lim YY, Lim TT, Tee JJ (2007) Antioxidant properties of several tropical fruits: A comparative study. Food Chem, 103(3): 1003-1008. [DOI:10.1016/j.foodchem.2006.08.038]
11. Vuolo MM, Lima VS, Junior MRM (2019) Phenolic compounds: Structure, classification, and antioxidant power. In Bioactive compounds (pp. 33-50). Woodhead Publishing. [DOI:10.1016/B978-0-12-814774-0.00002-5]
12. Dias MC, Pinto DC, Silva AM (2021) Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17): 5377. [DOI:10.3390/molecules26175377]
13. Ulusoy HG and Sanlier N (2020) A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr, 60(19): 3290-3303. [DOI:10.1080/10408398.2019.1683810]
14. Rather RA and Bhagat M (2020) Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health. Cancer Med, 9(24): 9181-9192. [DOI:10.1002/cam4.1411]
15. Huang KT, Wu CT, Chang Y, Ho FM, Chiang CK, Liu SH (2022) Therapeutic effect of quercetin polymeric nanoparticles on ischemia/reperfusion-induced acute kidney injury in mice. Biochem Biophys Res Commun, 608: 122-127. [DOI:10.1016/j.bbrc.2022.03.159]
16. Rotimi, D. E., Olaolu, T. D., & Adeyemi, O. S. (2022). Pharmacological action of quercetin against testicular dysfunction: A mini review. Journal of Integrative Medicine, 20(5): 396-401. [DOI:10.1016/j.joim.2022.07.001]
17. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B (2022) Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem, 30(383): 132531. [DOI:10.1016/j.foodchem.2022.132531]
18. Zaplatic E, Bule M, Shah SZA, Uddin MS, Niaz K (2019) Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer's disease. Life Sci, 224: 109-119. [DOI:10.1016/j.lfs.2019.03.055]
19. Sharma A, Kashyap D, Sak K, Tuli HS, Sharma AK (2018) Therapeutic charm of quercetin and its derivatives: a review of research and patents. Pharm Pat Anal, 7(1): 15-32. [DOI:10.4155/ppa-2017-0030]
20. Nna VU, Ujah GA, Mohamed M, Etim KB, Igba BO, Augustine ER, Osim EE (2017) Cadmium chloride-induced testicular toxicity in male wistar rats; prophylactic effect of quercetin, and assessment of testicular recovery following cadmium chloride withdrawal. Biomed Pharmacother, 94: 109-123. [DOI:10.1016/j.biopha.2017.07.087]
21. Kayode OT, Rotimi DE, Kayode AA, Olaolu TD, Adeyemi OS (2020) Monosodium glutamate (MSG)-induced male reproductive dysfunction: a mini review. Toxics, 8(1): 7. [DOI:10.3390/toxics8010007]
22. Oyewopo AO, Adeleke O, Johnson O, Akingbade A, Olaniyi KS, Areola ED, Tokunbo O (2021) Regulatory effects of quercetin on testicular histopathology induced by cyanide in Wistar rats. Heliyon, 7(7): e07662. [DOI:10.1016/j.heliyon.2021.e07662]
23. Wang C, Pan Y, Zhang QY, Wang FM, Kong LD (2012) Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PloS one, 7(6): e38285. [DOI:10.1371/journal.pone.0038285]
24. Postaci I, Coskun O, Senol N, Aslankoc R, & Comlekci S (2018) The physiopathological effects of quercetin on oxidative stress in radiation of 4.5 g mobile phone exposed liver tissue of rat. Bratisl Lek Listy, 119(8): 481-489. [DOI:10.4149/BLL_2018_088]
25. Polk C and Postow E (1996) Biological effects of electromagnetic fields. USA: CRC Press. pp. 312-313:582.
26. Bancroft JD, Stevens A, Turner DR (1996) Theory and Practice of Histological Techniques. p.129, London: Churchill Livingstone.
27. Şenol N, Kaya E, Coşkun Ö, Aslankoç R, Çömlekçi S (2023) Evaluation of the Effects of a 50 Hz Electric Field on Brain Tissue by Immunohistochemical Method, and on Blood Tissue by Biochemical, Physiological and Comet Method. Appl Sci, 13(5): 3276. [DOI:10.3390/app13053276]
28. Karimi A, Ghadiri Moghaddam F, Valipour M (2020) Insights in the biology of extremely low-frequency magnetic fields exposure on human health. Mol Biol Rep, 47: 5621-5633. [DOI:10.1007/s11033-020-05563-8]
29. Lai H and Levitt BB (2022) The roles of intensity, exposure duration, and modulation on the biological effects of radiofrequency radiation and exposure guidelines. Electromagn Biol Med, 41(2): 230-255. [DOI:10.1080/15368378.2022.2065683]
30. Bosch-Capblanch X, Esu E, Dongus S, Oringanje CM, Jalilian H, Eyers J, et al. (2022) The effects of radiofrequency electromagnetic fields exposure on human self-reported symptoms: A protocol for a systematic review of human experimental studies. Environ Int, 158: 106953. [DOI:10.1016/j.envint.2021.106953]
31. Li DY, Song JD, Liang ZY, Oskouei K, Xiao XQ, Hou WZ, et al. (2020) Apoptotic effect of 1800 MHz electromagnetic radiation on NIH/3T3 cells. Int J Environ Res Public Health, 17(3): 819. [DOI:10.3390/ijerph17030819]
32. Hinrikus, H., Koppel, T., Lass, J., Roosipuu, P., & Bachmann, M. (2023). Limiting exposure to radiofrequency radiation: the principles and possible criteria for health protection. International Journal of Radiation Biology, 99(8): 1167-1177. [DOI:10.1080/09553002.2023.2159567]
33. Tyrakis Tyrakis, C., Theodorou, K., Kiouvrekis, Y., Alexias, A., & Kappas, C. (2023). Radiofrequency exposure levels in Greece. Bioelectromagnetics, 44(1-2): 17-25. [DOI:10.1002/bem.22434]
34. Ziegelberger G (2009) ICNIRP statement on the" Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 ghz)". Health Phys, 97(3): 257-258. [DOI:10.1097/HP.0b013e3181aff9db]
35. Gautam R, Singh KV, Nirala J, Murmu NN, Meena R, Rajamani P (2019) Oxidative stress‐mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation. Andrologia, 51(3): e13201. [DOI:10.1111/and.13201]
36. Gazwi HS, Mahmoud ME, Hamed MM (2020) Antimicrobial activity of rosemary leaf extracts and efficacy of ethanol extract against testicular damage caused by 50-Hz electromagnetic field in albino rats. Environ Sci Pollut Res, 27: 15798-15805. [DOI:10.1007/s11356-020-08111-w]
37. Ozmen MF, Seker U, Yavas MC, Cirit U, Akdag MZ (2021) Effects of ganoderma lucidum and melatonin on sperm in rats exposed to electromagnetic field. Int J Radiat Res, 19(1): 121-126. [DOI:10.29252/ijrr.19.1.121]
38. Muti, N. D., Salvio, G., Ciarloni, A., Perrone, M., Tossetta, G., Lazzarini, R., ... & Balercia, G. (2023). Can extremely low frequency magnetic field affect human sperm parameters and male fertility?. Tissue and Cell, 82: 102045. [DOI:10.1016/j.tice.2023.102045]
39. Carneiro BA and El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol, 17(7): 395-417. [DOI:10.1038/s41571-020-0341-y]
40. Barati M, Darvishi B, Javidi MA, Mohammadian A, Shariatpanahi SP, Eisavand MR, Madjid Ansari A (2021) Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis. Cell Prolif, 54(12): e13154. [DOI:10.1111/cpr.13154]
41. Pentikäinen V, Erkkilä K, Suomalainen L, Otala M, Pentikäinen MO, Parvinen M, Dunkel L (2001) TNFα down-regulates the Fas ligand and inhibits germ cell apoptosis in the human testis. J Clin Endocrinol Metab, 86(9): 4480-4488. [DOI:10.1210/jcem.86.9.7861]
42. Hedger MP, Meinhardt A (2003) Cytokines and the immune-testicular axis. J Reprod Immunol, 58(1): 1-26. [DOI:10.1016/S0165-0378(02)00060-8]
43. Saygin M, Caliskan S, Karahan N, Koyu A, Gumral N, Uguz AC (2011) Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicol Ind Health, 27(5): 55-463. [DOI:10.1177/0748233710389851]
44. Azimzadeh M, Jelodar G (2019) Alteration of testicular regulatory and functional molecules following long‐time exposure to 900 MHz RFW emitted from BTS. Andrologia, 51(9): e13372. [DOI:10.1111/and.13372]
45. Guler G, Tomruk A, Ozgur E, Seyhan N (2010) The effect of radiofrequency radiation on DNA and lipid damage in non-pregnant and pregnant rabbits and their newborns. Gen Physiol Biophys, 29: 59-66. [DOI:10.4149/gpb_2010_01_59]
46. Hancı H, Kerimoğlu G, Mercantepe T, Odacı E (2018) Changes in testicular morphology and oxidative stress biomarkers in 60-day-old Sprague Dawley rats following exposure to continuous 900-MHz electromagnetic field for 1 ha day throughout adolescence. Reprod Toxicol, 81: 71-78. [DOI:10.1016/j.reprotox.2018.07.002]
47. Salek F, Baharara J, Shahrokhabadi KN, Amini E (2021) The guardians of germ cells; Sertoli-derived exosomes against electromagnetic field-induced oxidative stress in mouse spermatogonial stem cells. Theriogenology, 17: 112-122. [DOI:10.1016/j.theriogenology.2021.08.001]
48. Shokri M, Shamsaei ME, Malekshah AK, Amiri FT (2020) The protective effect of melatonin on radiofrequency electromagnetic fields of mobile phone‐induced testicular damage in an experimental mouse model. Andrologia, 52(11): e13834. [DOI:10.1111/and.13834]
49. Ersoy N, Acikgoz B, Aksu I, Kiray A, Bagriyanik HA, Kiray M (2023) The Effects of Prenatal and Postnatal Exposure to 50-Hz and 3 mT Electromagnetic Field on Rat Testicular Development. Medicina, 59(1): 71. [DOI:10.3390/medicina59010071]
50. Fujii J, Tsunoda S (2011) Redox regulation of fertilisation and the spermatogenic process. Asian J Androl, 13(3): 420. [DOI:10.1038/aja.2011.10]
51. D'Andrea G (2015) Quercetin: a flavonol with multifaceted therapeutic applications?. Fitoterapia,, 106: 256-271. [DOI:10.1016/j.fitote.2015.09.018]
52. Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, Akdag MZ (2019) Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med,, 38(1): 32-47. [DOI:10.1080/15368378.2019.1567526]
53. Gökçek-Saraç Ç, Şimşek T, Karakurt S (2023) Cytoprotective effects of low-frequency pulsed electromagnetic field against oxidative stress in glioblastoma cells. Gen Physiol Biophys, 42(1): 97-106. [DOI:10.4149/gpb_2022056]
54. Byrne NJ, Rajasekaran NS, Abel ED, Bugger H (2021) Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med,, 169: 317-342. [DOI:10.1016/j.freeradbiomed.2021.03.046]
55. Chahardoli A, Hajmomeni P, Ghowsi M, Qalekhani F, Shokoohinia Y, Fattahi A (2021) Optimization of Quercetin‐Assisted Silver Nanoparticles Synthesis and Evaluation of Their Hemocompatibility, Antioxidant, Anti‐Inflammatory, and Antibacterial effects. Global Challenges, 5(12): 2100075. [DOI:10.1002/gch2.202100075]
56. Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y (2016) The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci Technol, 56: 21-38. [DOI:10.1016/j.tifs.2016.07.004]
57. Farombi EO, Abarikwu SO, Adesiyan AC, Oyejola TO (2013) Quercetin exacerbates the effects of subacute treatment of atrazine on reproductive tissue antioxidant defence system, lipid peroxidation and sperm quality in rats. Andrologia, 45(4): 256-265. [DOI:10.1111/and.12001]
58. Sönmez M, Türk G, Çeribaşı S, Çiftçi M, Yüce A, Güvenç M, ... & Aksakal M (2014) Quercetin attenuates carbon tetrachloride‐induced testicular damage in rats. Andrologia, 46(8): 848-858. [DOI:10.1111/and.12159]
59. Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch‐Ernst KI, Lampen A (2018) Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res, 62(1): 1700447. [DOI:10.1002/mnfr.201700447]
Karaman I, Coskun O, Senol N, Sahin M, Comlekci S. Alleviative effect of quercetin on rat testicular against 2600 MHz electromagnetic field. Int J Radiat Res 2024; 22 (3) :537-543 URL: http://ijrr.com/article-1-5531-en.html