[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 23, Issue 2 (5-2025) ::
Int J Radiat Res 2025, 23(2): 447-454 Back to browse issues page
Evaluation of PD-L1 expression status in nasopharyngeal carcinoma by 18F-FDG PET/CT radiomics analysis
S. Yang , L. Li , H. Li , Y. Li
Department of Nuclear Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China , nfyyysx@126.com
Abstract:   (254 Views)
Background: We aimed to accurately and efficiently evaluate Programmed Death Ligand-1 (PD-L1) expression by relevant radiomic studies of fluoro-18-fluorodeoxyglucose (18F-FDG) Positron Emission Tomography/Computed Tomography (PET/CT) images in nasopharyngeal carcinoma (NPC) patients. Materials and Methods: This retrospective study included 60 untreated NPC patients had PET/CT. Cohorts of training and validation were randomly selected among the patients. The CT and PET radiomic features from the training cohort were obtained and screened, to construct CT, PET and combined models. Finally, verification and comparative analysis were performed. Results: According to the analysis, the maximum Standardized Uptake Value (SUVmax) alone was the standalone predictive indicator of PD-L1 presence level, thus incorporated into the combined model. Among our training cohort, the CT, PET, and combined models’ Area under Curve (AUC) values respectively were 0.837, 0.852, and 0.948, demonstrating excellent discrimination and calibration. However, the combined model had higher AUC values in the cohorts of training and validation, reaching AUCs of 0.948 and 0.802, respectively. Clinical decision curve analysis (DCA) further illustrated Combined model surpassed both the CT and PET models, attaining a benefit threshold probability of more than 5% and a net benefit (NB) of 0.450 at the optimal threshold probability. Conclusion: The combined predictive model based on relevant radiomic studies of PET/CT scans performed better than other models in assessing individualized PD-L1 expression in NPC.
Keywords: Nasopharyngeal Neoplasms, Immune Checkpoint Inhibitors, Radiomics, Positron Emission Tomography Computed Tomography.
Full-Text [PDF 1047 kb]   (61 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Chen YP, Chan ATC, Le QT, et al. (2019) Nasopharyngeal carcinoma. Lancet, 394(10192): 64-80. [DOI:10.1016/S0140-6736(19)30956-0]
2. Sung H, Ferlay J, Siegel RL, et al. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71(3): 209-249. [DOI:10.3322/caac.21660]
3. Cao W, Chen HD, Yu YW, et al. (2021) Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl), 134(7): 783-791. [DOI:10.1097/CM9.0000000000001474]
4. Xu M, Yao Y, Chen H, et al. (2019) Genome sequencing analysis identifies Epstein-Barr virus subtypes associated with high risk of nasopharyngeal carcinoma. Nat Genet, 51(7): 1131-1136. [DOI:10.1038/s41588-019-0436-5]
5. Lee AW, Ma BB, Ng WT, et al. (2015) Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol, 33(29): 3356-3364. [DOI:10.1200/JCO.2015.60.9347]
6. Colevas AD, Yom SS, Pfister DG, et al. (2018) NCCN Guidelines Insights: Head and Neck Cancers, Version 1.2018. J Natl Compr Canc Netw, 16(5): 479-490. [DOI:10.6004/jnccn.2018.0026]
7. Perri F, Bosso D, Buonerba C, et al. (2011) Locally advanced nasopharyngeal carcinoma: Current and emerging treatment strategies. World J Clin Oncol, 2(12): 377-383. [DOI:10.5306/wjco.v2.i12.377]
8. Perri F, Della Vittoria Scarpati G, Caponigro F, et al. (2019) Management of recurrent nasopharyngeal carcinoma: current perspectives. Onco Targets Ther, 12: 1583-1591. [DOI:10.2147/OTT.S188148]
9. Jung HA, Park KU, Cho S, et al. (2022) A phase II study of nivolumab plus gemcitabine in patients with recurrent or metastatic nasopharyngeal carcinoma (KCSG HN17-11). Clin Cancer Res, 28(19): 4240-4247. [DOI:10.1158/1078-0432.CCR-22-1238]
10. Hsu C, Lee SH, Ejadi S, et al. (2017) Safety and antitumor activity of pembrolizumab in patients with programmed death-ligand 1-positive nasopharyngeal carcinoma: Results of the KEYNOTE-028 study. J Clin Oncol, 35(36): 4050-4056. [DOI:10.1200/JCO.2017.73.3675]
11. Ma BBY, Lim WT, Goh BC, et al. (2018) Antitumor activity of nivolumab in recurrent and metastatic nasopharyngeal carcinoma: an international, multicenter study of the mayo clinic phase 2 consortium (NCI-9742). J Clin Oncol, 36(14): 1412-1418.
12. Fang W, Yang Y, Ma Y, et al. (2018) Camrelizumab (SHR-1210) alone or in combination with gemcitabine plus cisplatin for nasopharyngeal carcinoma: results from two single-arm, phase 1 trials. Lancet Oncol, 19(10): 1338-1350. [DOI:10.1016/S1470-2045(18)30495-9]
13. Yang Y, Qu S, Li J, et al. (2021) Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicenter, randomised, double-blind, phase 3 trial. Lancet Oncol, 22(8): 1162-1174. [DOI:10.1016/S1470-2045(21)00302-8]
14. Adkins DR and Haddad RI. (2022) Clinical trial data of Anti-PD-1/PD-L1 therapy for recurrent or metastatic nasopharyngeal Carcinoma: A review. Cancer Treat Rev, 109: 102428. [DOI:10.1016/j.ctrv.2022.102428]
15. Makowska A, Lelabi N, Nothbaum C, et al. (2021) Radiotherapy combined with PD-1 inhibition increases NK cell cytotoxicity towards nasopharyngeal carcinoma cells. Cells, 10(9): 2458. [DOI:10.3390/cells10092458]
16. Tang LL, Chen YP, Chen CB, et al. (2021) The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma. Cancer Commun (Lond), 41(11): 1195-1227. [DOI:10.1002/cac2.12218]
17. Ettinger DS, Wood DE, Aisner DL, et al. (2022) Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw, 20(5): 497-530.
18. Chiu HY, Chao HS, Chen YM. (2022) Application of artificial intelligence in lung cancer. Cancers (Basel), 14(6): 1370. [DOI:10.3390/cancers14061370]
19. Yin X, Liao H, Yun H, et al. (2022) Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer. Semin Cancer Biol, 86(Pt 2): 146-159. [DOI:10.1016/j.semcancer.2022.08.002]
20. Sun R, Limkin EJ, Vakalopoulou M, et al. (2018) A radiomics approach to assess tumor-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol, 19(9): 1180-1191. [DOI:10.1016/S1470-2045(18)30413-3]
21. Zheng X, Yao Z, Huang Y, et al. (2020) Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun, 11(1): 1236. [DOI:10.1038/s41467-020-15027-z]
22. Zhao X, Zhao Y, Zhang J, et al. (2023) Predicting PD-L1 expression status in patients with non-small cell lung cancer using [18F]FDG PET/CT radiomics. EJNMMI Res, 13(1): 4. [DOI:10.1186/s13550-023-00956-9]
23. Lim CH, Koh YW, Hyun SH, et al. (2022) A Machine Learning Approach Using PET/CT-based radiomics for prediction of PD-L1 expression in non-small cell lung cancer. Anticancer Res, 42(12): 5875-5884. [DOI:10.21873/anticanres.16096]
24. Shao J, Ma J, Zhang S, et al. (2022) Radiogenomic system for non-invasive identification of multiple actionable mutations and PD-L1 expression in non-small cell lung cancer based on CT images. Cancers (Basel), 14(19): 4823. [DOI:10.3390/cancers14194823]
25. Monaco L, De Bernardi E, Bono F, et al. (2022) The "digital biopsy" in non-small cell lung cancer (NSCLC): a pilot study to predict the PD-L1 status from radiomics features of [18F]FDG PET/CT. Eur J Nucl Med Mol Imaging, 49(10): 3401-3411. [DOI:10.1007/s00259-022-05783-z]
26. Wang C, Ma J, Shao J, et al. (2022) Non-invasive measurement using deep learning algorithm based on multi-source features fusion to predict PD-L1 expression and survival in NSCLC. Front Immunol, 13: 828560. [DOI:10.3389/fimmu.2022.828560]
27. Wang C, Ma J, Shao J, et al. (2022) Predicting EGFR and PD-L1 status in NSCLC Patients using multitask AI system based on CT images. Front Immunol, 13: 813072. [DOI:10.3389/fimmu.2022.813072]
28. Lo Gullo R, Wen H, Reiner JS, et al. (2021) Assessing PD-L1 expression status using radiomic features from contrast-enhanced breast MRI in breast cancer patients: Initial results. Cancers (Basel), 13(24): 6273. [DOI:10.3390/cancers13246273]
29. Shi W, Yang Z, Zhu M, et al. (2022) Correlation between PD-L1 expression and radiomic features in early-stage lung adenocarcinomas manifesting as ground-glass nodules. Front Oncol, 12: 986579. [DOI:10.3389/fonc.2022.986579]
30. Tian Y, Komolafe TE, Zheng J, et al. (2021) Assessing PD-L1 Expression Level via Preoperative MRI in HCC based on integrating deep learning and radiomics features. Diagnostics (Basel), 11(10): 1875. [DOI:10.3390/diagnostics11101875]
31. Gu X, Yu X, Shi G, et al. (2023) Can PD-L1 expression be predicted by contrast-enhanced CT in patients with gastric adenocarcinoma? A preliminary retrospective study. Abdom Radiol (NY), 48(1): 220-228. [DOI:10.1007/s00261-022-03709-9]
32. Xie W, Jiang Z, Zhou X, et al. (2023) Quantitative radiological features and deep learning for the non-invasive evaluation of programmed death ligand 1 expression levels in gastric cancer patients: A digital biopsy study. Acad Radiol, 30(7): 1317-1328. [DOI:10.1016/j.acra.2022.10.012]
33. Varghese B, Cen S, Zahoor H, et al. (2022) Feasibility of using CT radiomic signatures for predicting CD8-T cell infiltration and PD-L1 expression in renal cell carcinoma. Eur J Radiol Open, 9: 100440. [DOI:10.1016/j.ejro.2022.100440]
34. Nioche C, Orlhac F, Boughdad S, et al. (2018) LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res, 78(16): 4786-4789. (https:// doi.org/10.1158/0008-5472.CAN-18-0125) [DOI:10.1158/0008-5472.CAN-18-0125]
35. Zheng YM, Yuan MG, Zhou RQ, et al. (2022) A computed tomography-based radiomics signature for predicting expression of programmed death ligand 1 in head and neck squamous cell carcinoma. Eur Radiol, 32(8): 5362-5370. [DOI:10.1007/s00330-022-08651-4]
36. Zheng YM, Zhan JF, Yuan MG, et al. (2022) A CT-based radiomics signature for preoperative discrimination between high and low expression of programmed death ligand 1 in head and neck squamous cell carcinoma. Eur J Radiol, 146: 110093. [DOI:10.1016/j.ejrad.2021.110093]
37. Aerts HJ, Velazquez ER, Leijenaar RT, et al. (2014) Decoding tumor phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 5: 4006. [DOI:10.1038/ncomms5006]
38. Mano Y, Aishima S, Kubo Y, et al. (2014) Correlation between biological marker expression and fluorine-18 fluorodeoxyglucose uptake in hepatocellular carcinoma. Am J Clin Pathol, 142(3): 391-397. [DOI:10.1309/AJCPG8AFJ5NRKLLM]
39. Fang W, Zhang J, Hong S, et al. (2014) EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: Implications for oncotargeted therapy. Oncotarget, 5(23): 12189-12202. [DOI:10.18632/oncotarget.2608]
40. Li J, Ge S, Sang S, et al. (2021) Evaluation of PD-L1 expression level in patients with non-small cell lung cancer by 18F-FDG PET/CT radiomics and clinicopathological characteristics. Front Oncol, 11: 789014. [DOI:10.3389/fonc.2021.789014]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yang S, Li L, Li H, Li Y. Evaluation of PD-L1 expression status in nasopharyngeal carcinoma by 18F-FDG PET/CT radiomics analysis. Int J Radiat Res 2025; 23 (2) :447-454
URL: http://ijrr.com/article-1-6421-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 2 (5-2025) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4714