[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 23, Issue 2 (5-2025) ::
Int J Radiat Res 2025, 23(2): 455-460 Back to browse issues page
Meta-analysis and literature review on MRI diagnosis of cartilage invasion in laryngeal neoplasms
Z.D. Wang , Y. Zhan , H. Cao , X.D. Shan , X.H. Tai
Department of Otolaryngology, The Air Force Hospital of the Northern Theater Command of the Chinese People's Liberation Army, Shenyang, Liaoning, China , 13324042800@163.com
Abstract:   (282 Views)
Background: To analyze the sensitivity and specificity of magnetic resonance imaging (MRI) in diagnosing cartilage invasion in laryngeal neoplasms. Materials and Methods: A comprehensive search for relevant studies was conducted in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and the Cochrane Trials Registry, with the search period extending until September 1, 2024.Sensitivity, specificity, and diagnostic likelihood ratio (DLR) were combined. Symmetrical Receiver Operating Characteristic (SROC) curves and Fagan nomograms were plotted. Meta-regression and subgroup analyses were performed to identify heterogeneity sources. Results: A total of seven studies involving 418 participants were included. MRI demonstrated a sensitivity of 0.93 [95% CI: 0.89–0.96, I²=0.00] and a specificity of 0.88 [95% CI: 0.81–0.92, I²=70.36] for detecting cartilage invasion. The negative diagnostic likelihood ratio (DLR-) was 0.08 with a 95% confidence interval of 0.05 to 0.13. The Area Under Curve(AUC) of the SROC curve was 0.95 with a 95% confidence interval of 0.85 to 0.99. Leave-one-out sensitivity analysis validated the robustness of the results concerning heterogeneity, as subgroup analysis did not mitigate it. Deek's funnel plot showed a symmetrical distribution of studies around the regression line, indicating no significant publication bias (t=0.92, P=0.40). Conclusion: MRI provides a reliable diagnostic performance for cartilage invasion in Laryngeal Neoplasms.
Keywords: IMRT, Laryngeal neoplasms, cartilage invasion, magnetic resonance imaging, meta-analysis.
Full-Text [PDF 778 kb]   (66 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Bibi K and Shah MH (2023) Investigation of imbalances in essential/toxic metal levels in the blood of laryngeal cancer patients in comparison with controls. Biometals, 36: 111-127. [DOI:10.1007/s10534-022-00464-8]
2. Iravani K, Monshizadeh L, Moeinjahromi E, et al. (2022) Is there any association between total laryngectomy and sexual disorders in men? Iran J Otorhinolaryngol, 34: 233-237.
3. Gong XY, Chen HB, Zhang LQ, et al. (2022) NOTCH1 mutation associates with impaired immune response and decreased relapse-free survival in patients with resected T1-2N0 laryngeal cancer. Front Immunol, 13: 920253. [DOI:10.3389/fimmu.2022.920253]
4. Hu M and Zhang S (2022) Expression and clinical significance of FGFR1 and FGFR2 in laryngeal squamous cell carcinoma. Transl Cancer Res, 11: 3222-3234. [DOI:10.21037/tcr-22-1936]
5. Song G and Liu H (2017) Effect of hospital to home nutrition management model on postoperative clinical outcomes of patients with laryngeal carcinoma. Oncol Lett, 14: 4059-4064. [DOI:10.3892/ol.2017.6709]
6. Qiu HO, Wang H, Che N, et al. (2016) Identification and characterization of CD133(pos) subpopulation cells from a human laryngeal cancer cell line. Med Sci Monit, 22: 1146-1151. [DOI:10.12659/MSM.895645]
7. Pacella-Norman R, Urban MI, Sitas F, et al. (2002) Risk factors for oesophageal, lung, oral and laryngeal cancers in black South Africans. Br J Cancer, 86: 1751-1756. [DOI:10.1038/sj.bjc.6600338]
8. Zhu Y, Guo L, Wang S, et al. (2018) Association of smoking and XPG, CYP1A1, OGG1, ERCC5, ERCC1, MMP2, and MMP9 gene polymorphisms with the early detection and occurrence of laryngeal squamous carcinoma. J Cancer, 9: 968-977. [DOI:10.7150/jca.22841]
9. Brook I (2021) "The Laryngectomee Guide" is available in 18 languages (Free eBooks). World J Otorhinolaryngol Head Neck Surg, 7: 312-317. [DOI:10.1016/j.wjorl.2020.02.010]
10. Dankbaar JW, Oosterbroek J, Jager EA, et al. (2017) Detection of cartilage invasion in laryngeal carcinoma with dynamic contrast-enhanced CT. Laryngoscope Investig Otolaryngol, 2: 373-379. [DOI:10.1002/lio2.114]
11. Dulguerov P, Broglie MA, Henke G, et al. (2019) A review of controversial issues in the management of head and neck cancer: a Swiss multidisciplinary and multi-institutional patterns of care study-part 1 (head and neck surgery). Front Oncol, 9: 1125. [DOI:10.3389/fonc.2019.01125]
12. Atula T, Markkola A, Leivo I, et al. (2001) Cartilage invasion of laryngeal cancer detected by magnetic resonance imaging. Eur Arch Otorhinolaryngol, 258: 272-275. [DOI:10.1007/s004050100345]
13. Rao D, K P, Singh R, et al. (2022) Automated segmentation of the larynx on computed tomography images: a review. Biomed Eng Lett, 12: 175-183. [DOI:10.1007/s13534-022-00221-3]
14. Wiegand S (2016) Evidence and evidence gaps of laryngeal cancer surgery. GMS Curr Top Otorhinolaryngol Head Neck Surg, 15: Doc03.
15. Tang ZX, Gong JL, Wang YH, et al. (2018) Efficacy comparison between primary total laryngectomy and nonsurgical organ-preservation strategies in treatment of advanced stage laryngeal cancer: A meta-analysis. Medicine (Baltimore), 97: e10625. [DOI:10.1097/MD.0000000000010625]
16. Jiang P, Gu L, Zhou Y, et al. (2018) Synchronous laryngeal squamous cell carcinoma and intrahepatic cholangiocarcinoma present in an obese male with poor prognosis. Anticancer Res, 38: 5547-5550. [DOI:10.21873/anticanres.12890]
17. Shang DS, Ruan LX, Zhou SH, et al. (2013) Differentiating laryngeal carcinomas from precursor lesions by diffusion-weighted magnetic resonance imaging at 3.0 T: a preliminary study. PLoS One, 8: e68622. [DOI:10.1371/journal.pone.0068622]
18. Itamura K, Hsue VB, Barbu AM, et al. (2023) Diagnostic assessment (imaging) and staging of laryngeal cancer. Otolaryngol Clin North Am, 56: 215-231. [DOI:10.1016/j.otc.2022.12.006]
19. Si G, Du Y, Tang P, et al. (2024) Unveiling the next generation of MRI contrast agents: current insights and perspectives on ferumoxytol-enhanced MRI. Natl Sci Rev, 11: nwae057. [DOI:10.1093/nsr/nwae057]
20. Zhang LJ and Lu GM (2023) To promote the clinical application of PET/MRI in oncology. Zhonghua Yi Xue Za Zhi, 103: 2543-2545.
21. Aboussaleh I, Riffi J, Mahraz AM, et al. (2021) Brain tumor segmentation based on deep learning's feature representation. J Imaging, 7: 269. [DOI:10.3390/jimaging7120269]
22. Zbären P, Becker M, Läng H (1997) Staging of laryngeal cancer: endoscopy, computed tomography and magnetic resonance versus histopathology. Eur Arch Otorhinolaryngol, 254 (Suppl 1): S117-122. [DOI:10.1007/BF02439740]
23. Taha MS, Hassan O, Amir M, et al. (2014) Diffusion-weighted MRI in diagnosing thyroid cartilage invasion in laryngeal carcinoma. Eur Arch Otorhinolaryngol, 271: 2511-2516. [DOI:10.1007/s00405-013-2782-8]
24. Castelijns JA, Gerritsen GJ, Kaiser MC, et al. (1988) Invasion of laryngeal cartilage by cancer: comparison of CT and MR imaging. Radiology, 167: 199-206. [DOI:10.1148/radiology.167.1.3347723]
25. Becker M, Zbären P, Laeng H, et al. (1995) Neoplastic invasion of the laryngeal cartilage: comparison of MR imaging and CT with histopathologic correlation. Radiology, 194: 661-669. [DOI:10.1148/radiology.194.3.7862960]
26. Allegra E, Ferrise P, Trapasso S, et al. (2014) Early glottic cancer: role of MRI in the preoperative staging. Biomed Res Int, 2014: 890385. [DOI:10.1155/2014/890385]
27. Lyu Y, Qu J, He B, et al. (2021) The value of dual-energy CT and MRI in the diagnosis of pre-invasive laryngeal neoplasms. Journal of Clinical Radiology, 40: 1486-1490.
28. Li H and Chen X (2017) The diagnostic value of enhanced MRI combined with DWI sequences for malignant tumor invasion of the thyroid cartilage. Chinese Journal of Otorhinolaryngology, Head and Neck Surgery, 23: 333-337+341.
29. Bagherzadeh S, Shahbazi-Gahrouei D, Torabinezhad F, et al. (2022) The effects of (chemo) radiation therapy on the voice and quality of life in patients with non-laryngeal head and neck cancers: a subjective and objective assessment. International Journal of Radiation Research, 20: 397-402. [DOI:10.52547/ijrr.20.2.21]
30. Ahn SH, Hong HJ, Kwon SY, et al. (2017) Guidelines for the surgical management of laryngeal cancer: Korean society of thyroid-head and neck surgery. Clinical and experimental otorhinolaryngology, 10: 1-43. [DOI:10.21053/ceo.2016.01389]
31. Lam S, Gupta R, Kelly H, et al. (2015) Multiparametric evaluation of head and neck squamous cell carcinoma using a single-source dual-energy CT with fast kVp switching: State of the art. Cancers (Basel), 7: 2201-2216. [DOI:10.3390/cancers7040886]
32. Mohamad I, Hejleh TA, Qandeel M, et al. (2023) Concordance between head and neck MRI and histopathology in detecting laryngeal subsite invasion among patients with laryngeal cancer. Cancer Imaging, 23: 99. [DOI:10.1186/s40644-023-00618-y]
33. Park CJ, Kim JH, Ahn SS, et al. (2021) Preoperative MRI evaluation of thyroid cartilage invasion in patients with laryngohypopharyngeal cancer: comparison of contrast-enhanced 2D spin-echo and 3D T1-weighted radial gradient recalled-echo techniques. AJNR Am J Neuroradiol, 42: 1690-1694. [DOI:10.3174/ajnr.A7213]
34. Pucėtaitė M, Farina D, Ryškienė S, et al. (2024) The diagnostic value of CEUS in assessing non-ossified thyroid cartilage invasion in patients with laryngeal squamous cell carcinoma. J Clin Med, 13: 891. [DOI:10.3390/jcm13030891]
35. Schleder S, May M, Habicher W, et al. (2022) additional diffusion-weighted imaging with background body signal suppression (DWIBS) improves pre-therapeutical detection of early-stage (pT1a) glottic cancer: A feasibility and interobserver reliability study. Diagnostics (Basel), 12: 3200. [DOI:10.3390/diagnostics12123200]
36. Yu J, Xu W, Wang L, et al. (2023) The clinical value of DCE-MRI for differentiating secondary laryngeal cartilage lesions. Medicine (Baltimore), 102: e33352. [DOI:10.1097/MD.0000000000033352]
37. Smits HJG, Vink SJ, de Ridder M, et al. (2024) Prognostic value of pretreatment radiological MRI variables and dynamic contrast-enhanced MRI on radiotherapy treatment outcome in laryngeal and hypopharyngeal tumors. Clin Transl Radiat Oncol, 49: 100857. [DOI:10.1016/j.ctro.2024.100857]
38. Bini F, Pica A, Azzimonti L, et al. (2021) Artificial intelligence in thyroid field-A comprehensive review. Cancers (Basel), 13: 4740. [DOI:10.3390/cancers13194740]
39. Hartl DM, Landry G, Hans S, et al. (2010) Organ preservation surgery for laryngeal squamous cell carcinoma: low incidence of thyroid cartilage invasion. Laryngoscope, 120: 1173-1176. [DOI:10.1002/lary.20912]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Wang Z, Zhan Y, Cao H, Shan X, Tai X. Meta-analysis and literature review on MRI diagnosis of cartilage invasion in laryngeal neoplasms. Int J Radiat Res 2025; 23 (2) :455-460
URL: http://ijrr.com/article-1-6422-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 2 (5-2025) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.04 seconds with 48 queries by YEKTAWEB 4714