Department of Medical Imaging, Faculty of Allied Medical Sciences, Arab American University, Jenin, Palestine , mohammad.aljamal@aaup.edu
Abstract: (237 Views)
Background:Utilizing dental cone beam computed tomography (DCBCT) in wrist bone fracture diagnosis is relatively new. This study investigated the diagnostic value of DCBCT using a low-dose radiation technique for wrist fractures. Materials and Methods: This study compared dental CBCT (DCBCT) with multidetector computed tomography (MDCT) and extremity CBCT in terms of radiation dose, using the dose-length product (DLP) as the primary comparison metric. Twenty-nine adult patients presenting with various wrist injuries underwent imaging with different parameters using DCBCT. Image quality was independently assessed by two radiologists using a 5-point Likert scale. Results: DCBCT demonstrated a significantly lower radiation dose than MDCT, though slightly higher than extremity CBCT. The optimized DCBCT protocol (70 kV, 2 mAs, 15 seconds) provided high diagnostic image quality, with an interrater agreement of 85.4%. Conclusion: DCBCT offers an effective, lower-radiation alternative for diagnosing wrist fractures compared to MDCT. Optimized protocols provide good image quality and could be cost-effective, particularly in regions where extremity CBCT is unavailable.
2. Balci A, Basara I, Çekdemir EY, et al. (2015) Wrist fractures: sensitivity of radiography, prevalence, and patterns in MDCT. Emerg Radiol, 22 (3): 251-6. [DOI:10.1007/s10140-014-1278-1]
3. Gibney B, Smith M, Moughty A, et al. (2019) Incorporating Cone-Beam CT Into the Diagnostic Algorithm for Suspected Radiocarpal Fractures: A New Standard of Care? AJR Am J Roentgenol, 213 (5): 1117-23. [DOI:10.2214/AJR.19.21478]
4. Ludlow JB (2018) Hand-wrist, knee, and foot-ankle dosimetry and image quality measurements of a novel extremity imaging unit providing CBCT and 2D imaging options. Med Phys, 45 (11): 4955-63. [DOI:10.1002/mp.13198]
5. Murphy MC, Gibney B, Walsh J, et al. (2022) Ultra-low-dose cone-beam CT compared to standard dose in the assessment for acute fractures. Skeletal Radiol, 51 (1): 153-9. [DOI:10.1007/s00256-021-03825-5]
6. Ragab H, Abdelaziz DM, Khalil MM, et al. (2023) Assessment of image quality of two cone-beam computed tomography of the Varian Linear accelerators: Comparison with spiral CT simulator. International Journal of Radiation Research, 21 (3): 491-7. [DOI:10.61186/ijrr.21.3.491]
7. Grassi R, Guerra E, Berritto D (2023) Bone fractures difficult to recognize in emergency: May be cone beam computed tomography (CBCT) the solution? Radiol Med, 128 (1): 1-5. [DOI:10.1007/s11547-022-01584-4]
8. Edlund R, Skorpil M, Lapidus G, et al. (2016) Cone-Beam CT in diagnosis of scaphoid fractures. Skeletal Radiol, 45 (2): 197-204. [DOI:10.1007/s00256-015-2290-6]
9. Neubauer J, Benndorf M, Ehritt-Braun C, et al. (2018) Comparison of the diagnostic accuracy of cone beam computed tomography and radiography for scaphoid fractures. Sci Rep, 8 (1): 3906. [DOI:10.1038/s41598-018-22331-8]
10. Koivisto J, van Eijnatten M, Kiljunen T, et al. (2018) Effective radiation dose in the wrist resulting from a radiographic device, two cbct devices and one msct device: A comparative study. Radiat Prot Dosimetry, 179 (1): 58-68. [DOI:10.1093/rpd/ncx210]
11. Pallaver A, Honigmann P (2019) The role of cone-beam computed tomography (CBCT) scan for detection and follow-up of traumatic wrist pathologies. J Hand Surg Am, 44 (12): 1081-7. [DOI:10.1016/j.jhsa.2019.07.014]
12. Ferreira Branco D, Bouvet C, Hamard M, et al. (2022) Reliability of radio-ulnar and carpal alignment measurements in the wrist between radiographs and 3D imaging. Eur J Radiol, 154: 110417. [DOI:10.1016/j.ejrad.2022.110417]
13. Borel C, Larbi A, Delclaux S, et al. (2017) Diagnostic value of cone beam computed tomography (CBCT) in occult scaphoid and wrist fractures. Eur J Radiol, 97: 59-64. [DOI:10.1016/j.ejrad.2017.10.010]
14. Hafezi L, Divband D, Deevband MR (2021) New method to organ dose assessment in cone-beam computed tomography using ImPACT software. International Journal of Radiation Research, 19 (4): 1049-53. [DOI:10.52547/ijrr.19.4.36]
15. Posadzy M, Desimpel J, Vanhoenacker F (2018) Cone beam CT of the musculoskeletal system: clinical applications. Insights Imaging, 9 (1): 35-45. [DOI:10.1007/s13244-017-0582-1]
16. Hashimoto K, Arai Y, Iwai K, et al. (2003) A comparison of a new limited cone beam computed tomography machine for dental use with a multidetector row helical CT machine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 95 (3): 371-7. [DOI:10.1067/moe.2003.120]
17. Hashimoto K, Kawashima S, Araki M, et al. (2006) Comparison of image performance between cone-beam computed tomography for dental use and four-row multidetector helical CT. J Oral Sci, 48 (1): 27-34. [DOI:10.2334/josnusd.48.27]
18. Pauwels R, Beinsberger J, Stamatakis H, et al. (2012) Comparison of spatial and contrast resolution for cone-beam computed tomography scanners. Oral Surg Oral Med Oral Pathol Oral Radiol, 114 (1): 127-35. [DOI:10.1016/j.oooo.2012.01.020]
19. Zamani H, Falahati F, Omidi R, et al. (2020) Estimating and comparing the radiation cancer risk from cone-beam computed tomography and panoramic radiography in pediatric and adult patients. International Journal of Radiation Research, 18 (4): 885-93. [DOI:10.52547/ijrr.18.4.885]
20. Kaasalainen T, Ekholm M, Siiskonen T, et al. (2021) Dental cone beam CT: An updated review. Phys Med, 88: 193-217. [DOI:10.1016/j.ejmp.2021.07.007]
Aljamal M, Qutit A, Abuzaid M, Omarah N, Zahri M, Fairus M. Diagnostic value of dental cone beams computed tomography using low-dose radiation technique for diagnosis of wrist fractures. Int J Radiat Res 2025; 23 (2) :489-492 URL: http://ijrr.com/article-1-6434-en.html